
Quaternary LCZ Sequences Constructed From m-Sequences 1

∗Sang-Hyo Kim, ∗Ji-Woong JangO, ∗Jong-Seon No, and +Habong Chung
∗Seoul National University, +Hongik University

{kimsh,stasera}@ccl.snu.ac.kr, jsno@snu.ac.kr, habchung@hongik.ac.kr

Abstract

In this paper, given a composite integer n, we propose a method of constructing quaternary low
correlation zone(LCZ) sequences of period 2n− 1 from binary m-sequences of the same length. The
correlation distribution of these new quaternary LCZ sequences is derived.

I. Introduction

In a microcellular communication environment such
as wireless LAN where the cell size is very small,
transmission delay is relatively small and thus it
is possible to maintain the time delay in reverse
link within a few chip. In such a system as the
quasi-synchronous code-division multiple-access(QS-
CDMA) system proposed by Gaudenzi, Elia, and
Vilola[1], multiple chip time delay among different
users are allowed, which gives more flexibility in de-
signing the wireless communication system.

In the design of sequences for QS-CDMA system,
what matters most is to have low correlation zone
around orgin rather than to minimize maximum non-
ntrivial correlation value[5]. In fact, low correlation
zone(LCZ) sequences show better performance than
other well-known sequence sets with optimal correla-
tion property. Let S be a set of M sequences of period
N . If the magnitude of correlation function between
any two sequences in S takes the values less than or
equal to ε within the range −L < τ < L, of the offset
τ , then S is called an (N, M,L, ε) LCZ sequence set.

In this paper, given a composite integer n, we pro-
pose a method of constructing quaternary low correla-
tion zone(LCZ) sequences of period 2n−1 from binary
m-sequences of the same length. The correlation dis-
tribution of these new quaternary LCZ sequences is
derived.

II. Preliminaries

In this section, we introduce some definitions and no-
tations.

Let F2n be the finite field with 2n elements. The
trace function trn

m(·) from F2n to F2m is defined by
trn

m(x) =
∑ n

m−1
i=0 x2mi

, where x ∈ F2n and m|n. It
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is well known that trn
1 (αt) is a binary m-sequence of

period 2n − 1, where α is a primitive element in F2n .
In this paper, we only deal with binary and qua-

ternary sequences of period 2n − 1, which can be re-
garded as mappings from F2n to F2 and to an integer
ring Z4 = {0, 1, 2, 3}, respectively. We use the nota-
tions ¢ for the addition in Z4, only if we think it is
necessary.

Let F ∗2n = F2n \ {0} and s(x) be a mapping from
F2n to F2 or Z4. When we restrict the mapping s(x)
to F ∗2n and replace x by αt, then we can obtain a
sequence s(αt), 0 ≤ t ≤ 2n − 2, of period 2n − 1.
Hence, for convenience, we will use the expression ‘a
binary or quaternary sequence s(αt) of period 2n− 1’
interchangeably with ‘a mapping s(x) from F2n to F2

or Z4’.
For δ ∈ F ∗2n , the crosscorrelation function between

two quaternary sequences si(x) and sj(x) is defined
as

Ri,j(δ) =
∑

x∈F∗2n

ω
si(xδ)−sj(x)
4

where w4 is a complex fourth root of unity.
It is not difficult to see that a quaternary sequences

can be decomposed into two constituent binary se-
quences. Let v1 and v2 be variables over Z2, i.e.,
Boolean variables. Then a variable v over Z4 can be
expressed as

v = v1 ¢ 2v2. (1)

Let us use the notation v = (v2, v1) to alternatively
represent (1). Let φ(·) and ψ(·) be the maps defined
by

φ(v) = v1, ψ(v) = v2.

Using the expression (v2, v1), we can obtain the
truth tables for φ(v−w) and ψ(v−w) given in Table 1.

Let v(x), w(x), and d(x) be quaternary sequences
given as

v(x) = v1(x) ¢ 2v2(x), w(x) = w1(x) ¢ 2w2(x)



Table 1: Truth tables for φ(v − w) and ψ(v − w).

φ(v − w) w =(0,0) (0,1) (1,1) (1,0)
v =(0,0) 0 1 1 0

(0,1) 1 0 0 1
(1,1) 1 0 0 1
(1,0) 0 1 1 0

ψ(v − w) w =(0,0) (0,1) (1,1) (1,0)
v =(0,0) 0 1 0 1

(0,1) 0 0 1 1
(1,1) 1 1 0 0
(1,0) 1 0 1 0

and
d(x) = v(x)− w(x)

where x ∈ F ∗2n . Using Karnaugh map and Table 1,
the mappings φ and ψ of the quaternary sequence d(x)
are given by

φ(d(x)) = v1(x) + w1(x) (2)

ψ(d(x)) = v1(x)w1(x) + w1(x) + w2(x) + v2(x).(3)

III. Construction of Quaternary LCZ Sequences

In this section, we construct a set of quaternary LCZ
sequence using an m-sequences as their constituent
sequences. The following lemma is useful in the com-
putation of correlation of these quaternary LCZ se-
quences.

Lemma 1 : Let s(x) be a function from F2n to Z4,
where s(0) = 0. We define two Boolean constituent
functions of s(x) as

φs(x) = φ(s(x)), ψs(x) = ψ(s(x))

and their modulo-2 sum as

µs(x) = φs(x) + ψs(x).

Let Nf (c) denote the number of occurrences of f(x) =
c as x varies over F2n . Then, we have
∑

x∈F2n

ω
s(x)
4 = (Nψs(0)−Nµs(1))+j(Nµs(1)−Nψs(1)).

(4)

Proof : It is clear thatX
x∈F2n

ω
s(x)
4 = (Ns(0)−Ns(2)) + j(Ns(1)−Ns(3)). (5)

Equation (4) can be easily obtained from the follow-
ings :

Nψs(1) = Ns(2) + Ns(3) (6)
Nψs

(0) = 2n −Nψs
(1) = Ns(0) + Ns(1) (7)

Nµs(1) = Ns(1) + Ns(2). (8)

¤
From above lemma, it is clear that the function

s(x) is balanced if and only if ψs(x) and µs(x) are
balanced.

Let f(x) be a function from F2n to F2. We can
use f(x) as the constituent sequence of a quaternary
sequence q(x) as

q(x) = f(x) ¢ 2f(ax)

where a ∈ F2n\F2. We can derive the crosscorrelation
values between two quaternary sequences constructed
from an m-sequence.

Theorem 1 : Let ma(x) and mb(x) be two quater-
nary sequences defined by the functions

ma(x) = trn
1 (x) ¢ 2trn

1 (ax)
mb(x) = trn

1 (x) ¢ 2trn
1 (bx)

where a, b ∈ F2n\F2. Then, their crosscorrelation val-
ues are given as

Ra,b(δ) =





2n − 1, a = b and δ = 1
−1 + 2n−1, a 6= b and δ = b

a or b+1
a+1

−1 + j2n−1, δ = b+1
a

−1− j2n−1, δ = b
a+1

−1, otherwise

where j =
√−1.

Proof : Let d(x) = ma(δx) −mb(x). The crosscor-
relation function between two sequences ma(x) and
mb(x) is given by

Ra,b(δ) =
∑

x∈F∗2n

w
d(x)
4 = −1 +

∑

x∈F2n

w
d(x)
4 . (9)

From (2) and (3), we have

φd(x) = trn
1 (δx) + trn

1 (x)
ψd(x) = trn

1 (δx)trn
1 (x) + trn

1 ((δa + 1 + b)x)
µd(x) = trn

1 (δx)trn
1 (x) + trn

1 ((δ(a + 1) + b)x).

Define

Sψd
(δ) = Nψd

(0)−Nψd
(1) (10)

Sµd
(δ) = Nµd

(0)−Nµd
(1). (11)



It is clear that the mapping ψd(x) is balanced if
and only if Sψd

(δ) = 0.
In order to derive Ra,b(δ), we have to compute

Nψd
(0), Nψd

(1), and Nµd
(1) from Sψd

(δ) and Sµd
(δ).

Case 1) a 6= b :
For δ = 1, we have

Sψd
(1) = Sµd

(1) =
∑

x∈F2n

(−1)tr
n
1 (x)+trn

1 ((b+1+a)x).

From the linearity and balance property of trn
1 (x), we

have
Sψd

(1) = Sµd
(1) = 0.

From Lemma 1, we have

Ra,b(1) = −1.

Next we consider the case of δ ∈ F2n \ F2. For a
Boolean function k(x) on F2n , we can define a trace
transform K(λ) given by

K(λ) =
∑

x∈F2n

(−1)k(x)+trn
1 (λx).

It is obvious that Sψd
(δ) and Sµd

(δ) in (10) and
(11) are the values of trace transform of the quadratic
Boolean function

k(x) = trn
1 (δx)trn

1 (x)

evaluated at λ = δa + 1 + b and λ = δ(a + 1) + b,
respectively.

The rank of the quadratic Boolean function k(x)
gives its distribution of trace transform values (see
Theorem 6.2 of [2]). Now we have to examine the
bilinear form of k(x) to compute the rank of the
quadratic Boolean function k(x) [4]. The bilinear
form of k(x) is given by

Bk(x, y) = k(x) + k(y) + k(x + y)
= trn

1 (x[trn
1 (δy) + δtrn

1 (y)]).

The number of y which satisfies Bk(x, y) = 0 for all x
is equal to that of the solutions to the equation

trn
1 (δy) + δtrn

1 (y) = 0.

Since δ ∈ F2n \ F2, the number of solutions is equal
to the number of y ∈ F2n satisfying

trn
1 (δy) = 0 and trn

1 (y) = 0, (12)

which is obviously 2n−2 derived from the difference-
balance property of the trace function. Thus the rank
of the quadratic form is n− (n− 2) = 2.

It is not difficult to derive the values of λ which
yield nonzero K(λ). For λ = 0,

K(0) =
∑

x∈F2n

(−1)tr
n
1 (δx)trn

1 (x) = 2n−1

because (trn
1 (δx), trn

1 (x)) = (1, 1) occurs 2n−2 times
as x varies over F2n . In a similar way, we have

K(λ) =





2n−1, λ = 0, 1, δ

−2n−1, λ = 1 + δ

0, otherwise.
(13)

Since Sψ(δ) and Sµ(δ) are K(λ) evaluated at λ =
δa + 1 + b and δ(a + 1) + b, respectively, (13) can be
rewritten as

Sψd
(δ) =





0, δ 6= b+1
a , b

a , b+1
a+1 , b

a+1

2n−1, δ = b+1
a , b

a , b+1
a+1

−2n−1, δ = b
a+1

(14)

Sµd
(δ) =





0, δ 6= b
a+1 , b+1

a+1 , b
a , b+1

a

2n−1, δ = b
a+1 , b+1

a+1 , b
a

−2n−1, δ = b+1
a

(15)

for δ ∈ F ∗2n .
Finally from (10),(11),(14), and (15), we have

Ra,b(δ) =





−1 + j2n−1, δ = b+1
a

−1 + 2n−1, δ = b
a and b+1

a+1

−1− j2n−1, δ = b
a+1

−1, otherwise.

Case 2) a = b :
When δ = 1, it is straightforward that d(x) = 0

and R1,2(1) = 2n − 1. For δ ∈ F2n \ F2, we have

Sψd
(δ) =





2n−1, δ = a+1
a

−2n−1, δ = a
a+1

0, otherwise
(16)

Sµd
(δ) =





2n−1, δ = a
a+1

−2n−1, δ = a+1
a

0, otherwise.
(17)

Thus the correlation distribution is given by

Ra,b(δ) =





2n − 1, δ = 1
−1 + j2n−1, δ = a+1

a

−1− j2n−1, δ = a
a+1

−1, otherwise

for δ ∈ F ∗2n . ¤
Using Theorem 1, we can construct a set of quater-

nary LCZ sequences.

Theorem 2 : Let n and e be positive integers such
that e|n. Let β be a primitive element in F2e and
T = 2n−1

2e−1 . Let M = {mi(x)|0 ≤ i ≤ 2e− 2, x ∈ F ∗2n}
be the set of sequences defined by the functions

m0(x) = 2trn
1 (x)

mi(x) = trn
1 (x) ¢ 2trn

1 (βix), for 1 ≤ i ≤ 2e − 2.



Then, the setM is a (2n−1, 2e−1, T, 1) LCZ sequence
set and has the following correlation distribution:

Ri,k(δ) =

8>>>>>>>>>>><>>>>>>>>>>>:

2n − 1, 2e − 1 times

−1, A times

−1 + j2n−1, 2e(2e − 2) times

−1− j2n−1, 2e(2e − 2) times

−1 + 2n−1, 2(2e − 1)(2e − 2) times

2n−1 − 1 + j2n−1, 2(2e − 1) times

2n−1 − 1− j2n−1, 2(2e − 1) times

(18)

as δ varies over F ∗2n and 0 ≤ i, k ≤ 2e − 2 and where A is

2 + (2n+e + 2n − 5 · 2e + 4)(2e − 1).

Proof : Set δ = ατ . Let d(x) = mi(δx)−mk(x). We
consider the following five cases.
Case 1) i = k = 0 (once):

In this case, R0,0(δ) can be rewritten as

R0,0(δ) =

{
2n − 1, once for δ = 1
−1, 2n − 2 times for δ ∈ F2n \ F2.

Case 2) i = k 6= 0 (2e − 2 times):
Let a = βi = βk. From Theorem 1, the correlation

function is given as

Ri,i(δ) =





2n − 1, once for δ = 1
−1 + j2n−1, once for δ = a+1

a

−1− j2n−1, once for δ = a
a+1

−1, otherwise (2n − 4 times)

for δ ∈ F ∗2n .
Case 3) i 6= 0 and k = 0 (2e − 1 times) :

Set a = βi. Then d(x) is given by d(x) = {trn
1 (δx)¢

2trn
1 (aδx)} − 2trn

1 (x). Thus Ri,0(δ) is written as

Ri,0(δ) =
∑

x∈F∗2n

ω
trn

1 (δx)�2(trn
1 (aδx)+trn

1 (x))
4 .

It is clear that Nψd
(0) = 2n if δ = 1

a and 2n−1

otherwise. And Nµd
(0) = 2n if δ = 1

a+1 and 2n−1

otherwise. Using Lemma 1, we have

Ri,0(δ) =





2n−1 − 1 + j2n−1, once for δ = 1
a

2n−1 − 1− j2n−1, once for δ = 1
a+1

−1, otherwise (2n − 3 times).

Case 4) i = 0 and k 6= 0 (2e − 1 times) :
Set b = βk. Similarly to Case 3, we have

R0,k(δ) =





2n−1 − 1 + j2n−1, once for δ = b

2n−1 − 1− j2n−1, once for δ = b + 1
−1, otherwise (2n − 3 times).

Case 5) i 6= k, i 6= 0, and k 6= 0 ((2e − 1)(2e − 2)
times ):

Let a = βi and b = βk. The crosscorrelation func-
tion between the two sequences mi(x) and mk(x) is
given by

Ri,k(δ) =
∑

x∈F∗2n

ω
(trn

1 (xδ)�2trn
1 (axδ))�(trn

1 (x)�2trn
1 (bx))

4 .

From Theorem 1, we have

Ri,k(δ) =





−1 + j2n−1, once for δ = b+1
a

−1 + 2n−1, twice for δ = b
a or b+1

a+1

−1− j2n−1, once for δ = b
a+1

−1, otherwise (2n − 5times).

Given any pair of sequences in the set M, the
correlation functions have the low correlation zone
[1 − T, T − 1]. We can derive (18) by combining the
above 5 cases. ¤
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