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Abstract

In this paper, we propose new methods of constructing optimal binary low correlation zone (LCZ)
sequences. In the new method, we devise a column sequence set of length 2m+1 − 1 from a binary
sequence of period 2m − 1 having ideal autocorrelation property and this column sequence set is used
to construct binary LCZ sequence sets of period 2n − 1 when (m+1)|n. The new method gives us the
optimal sets with respect to the bound by Tang, Fan, and Matsufuji.

1. Introduction

Unlike the conventional code division multiple
access (CDMA) systems, in the quasi-synchronous
CDMA system [1] where maintaining synchronization
within a few chips is feasible even in the reverse link
due to the relatively small transmission delay, the most
important property of the sequences used for reducing
multiple access interference (MAI) is low correlation
property around the origin [5]. The sequence set with
this property is called low correlation zone (LCZ) se-
quence. They also have shown that an LCZ sequence
set has better performance than other well-known se-
quence sets with optimal correlation property [5]. For
a prime p, Tang and Fan [7] proposed p-ary LCZ se-
quence sets by extending the alphabet size of each se-
quence in Long’s work [5]. And they also proposed a
construction method of p-ary LCZ sequence sets by us-
ing interleaved sequences [8]. But for a prime p, no op-
timal set of p-ary LCZ sequence set has been reported
yet.

In this paper, we propose new methods of construct-
ing optimal binary LCZ sequences. In the new method,
we devise a column sequence set of length 2m+1 − 1
from a binary sequence of period 2m − 1 having ideal
autocorrelation property and this column sequence set
is used to construct binary LCZ sequence sets of period
2n − 1 when (m + 1)|n. The new method gives us the
optimal sets with respect to the bound by Tang, Fan,
and Matsufuji [9].

2. Preliminaries

Let S be a set of D sequences of period N . If the
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magnitude of correlation function between any two se-
quences in S takes the values less than or equal to ǫ
for the offset τ in the range −Z < τ < Z, then S is
called an (N,D,Z, ǫ) LCZ sequence set.

Let p be a prime and Fpn be the finite field with pn

elements. Let vi(x) and vj(x) be two p-ary sequences
of period pn − 1, defined in F ∗

pn = Fpn\{0}. Then for
δ ∈ F ∗

pn , the correlation function between two p-ary
sequences vi(x) and vj(x) is defined as

Rvi,vj
(δ) =

∑

x∈F∗

pn

ωvi(xδ)−vj(x)
p

where ωp is a complex primitive p-th root of unity. We
will abuse the notation of the correlation function as
Ri,j(τ) = Rvi,vj

(ατ ) for δ = ατ , where α is a primitive
element in Fpn .

Let v(t) be a p-ary sequence of period pn − 1. Then
v(t) is said to have balance property if number of zero
element is one less than that of each nonzero element
in one period of the sequence. And if the sequence
v(t) − v(t + τ) is balanced for all τ 6≡ 0 mod pn − 1,
then v(t) is said to have difference-balance property.

The trace function trn
m(·) from Fpn to Fpm is defined

by

trn
m(x) =

n
m

−1
∑

i=0

xpmi

where x ∈ Fpn and m|n. It is well known that trn
m(αt)

is a pm-ary m-sequence of period pn − 1, where α is a
primitive element in Fpn .

Klapper [4] introduced the d-form function. A d-
form function H(x) on Fpn over Fpm is defined as a
function satisfying for any y ∈ Fpm and x ∈ Fpn

H(yx) = ydH(x). (1)

Tang and Fan [8] stated the following theorem using



the interleaved sequence [2], which can be used for the
construction of an LCZ sequence set.

Theorem 1 [8] Let m and n be integers such that
m|n. Let f(y) and g(y) be cyclically distinct sequences
of period pm − 1 from Fpm to Fp and the function
h(x) from Fpn to Fpm be a 1-form function over Fpm

with balance and difference-balance property. If we set
f(0) = g(0) = 0, then the correlation function Rf,g(δ)
between f(h(x)) and g(h(x)) is given as

Rf,g(δ)=
∑

x∈F∗

pn

ωf(h(δx))−g(h(x))
p

=

{

pn−m
(

Cf,g(δ) + 1
)

− 1, if δ ∈ Fpm

pn−2m(I(f) + 1)(Ī(g) + 1) − 1, if δ /∈ Fpm

where I(f) =
∑

y∈F∗

pm
ω

f(y)
p , Cf,g(δ) =

∑

y∈F∗

pm
ω

f(δy)−g(y)
p , and Ī(·) denotes complex

conjugate of I(·). ¤

In the above theorem, f(·) and g(·) are called the col-
umn sequences of period pm−1 in the two dimensional
representation of the sequences f(h(·)) and g(h(·)) of
period pn − 1, respectively.

It is clear that I(f) = −1 corresponds to the balance
property of the column sequence f(y) defined on F ∗

pm

if p is a prime. If the column sequences are balanced,
we have

Rf,g(δ) = −1, for δ /∈ Fpm .

In order to have Rf,g(1) = −1, we have to have
Cf,g(1) = −1, which means that the in-phase cross-
correlation function of each pair in the column se-
quence set has the value −1.

Property 2 Let A be the set of sequences of period
pm − 1 satisfying the following properties:

i) All the sequences in the set A are cyclically dis-
tinct.

ii) Each sequence in the set A has the balance prop-
erty.

iii) In-phase cross-correlation value of each pair of
the sequences in the set A is always −1.

¤

Theorem 1 tells us that if we have the sequence set
A satisfying Property 2, then the (pn − 1, |A|, (pn −
1)/(pm − 1), 1) p-ary LCZ sequence set can be con-
structed.

In the subsequent sections, we propose methods of
constructing the column sequence sets satisfying Prop-
erty 2, some of which are of the maximum size.

3. New Optimal Binary LCZ Sequence Sets

In this section, for integers n and m such that (m+
1)|n, we construct the optimal binary LCZ sequence set

of period 2n − 1 by using binary sequences of period
2m − 1 with ideal autocorrelation.

The following lemma can be easily stated without
proof.

Lemma 3 Let m1(t) and m2(t) be two cyclically dis-
tinct p-ary sequences with linear span L1 and L2, re-
spectively. The maximum run lengths of the symbol
0 and the symbol a, 1 ≤ a ≤ p − 1, for the differ-
ence sequence m1(t) − m2(t) are less than or equal to
L1 + L2 − 1 and L1 + L2, respectively.

¤

Using two binary sequences with ideal autocorrela-
tion, we can construct a set of column sequences satis-
fying Property 2 as in the following theorem.

Theorem 4 Let m1(t) and m2(t) be two binary se-
quences, not necessarily distinct, of period 2m − 1
with ideal autocorrelation. Let L1 and L2 be the lin-
ear spans of the sequences m1(t) and m2(t), respec-
tively, such that L1 + L2 + max(L1, L2) < 2m − 1
and in addition, L1 = L2 < 2m−1, if m1 and m2

are cyclically equivalent. Define the new sequences
si(t), 0 ≤ i ≤ 2m+1 − 2 of period 2m+1 − 1 such that

i) for 0 ≤ i ≤ 2m − 2

si(t) =











m1(t + i), 0 ≤ t ≤ 2m − 2

0, t = 2m − 1

m2(t − 1 − i), 2m ≤ t ≤ 2m+1 − 2

(2)

ii) for 2m − 1 ≤ i ≤ 2m+1 − 3

si(t) =











m1(t + i), 0 ≤ t ≤ 2m − 2

1, t = 2m − 1

m2(t − 1 − i) + 1, 2m ≤ t ≤ 2m+1 − 2

(3)
and

s2m+1−2(t) =

{

0, 0 ≤ t ≤ 2m − 2

1, 2m − 1 ≤ t ≤ 2m+1 − 2.

Then the set of sequences si(t) satisfies Property 2.

Proof: From the definition of si(t), it is clear that
si(t) is balanced and it is also easy to see that the
in-phase cross-correlation Csi,sj

(1) between si(t) and
sj(t) takes the value −1.

Certainly the last sequence s2m+1−2(t) is cyclically
distinct to every other sequence. What we are going
to show is that for any i, j, 0 ≤ i, j ≤ 2m+1 − 3, and
τ , sj(t) = si(t + τ) implies that i = j and τ = 0.

Case 1) 0 ≤ i, j ≤ 2m − 3 and 0 ≤ τ ≤ 2m − 2
It is not difficult to see that si(t+τ) can be expressed

as:



si(t+τ) =







































m1(t + i + τ), 0 ≤ t ≤ 2m − 2 − τ

0, t = 2m − 1 − τ

m2(t − 1 − i + τ),

2m − τ ≤ t ≤ 2m+1 − 2 − τ

m1(t + i + τ − 1),

2m+1 − 1 − τ ≤ t ≤ 2m+1 − 2.

(4)

Assume sj(t) = si(t+ τ) for all t. From (2) and (4),
we have

m1(t + j) + m1(t + i + τ) = 0,

0 ≤ t ≤ 2m − 2 − τ (5)

m1(t + j) + m2(t − 1 − i + τ) = 0,

2m − τ ≤ t ≤ 2m − 2 (6)

m2(t − 1 − j) + m2(t − 1 − i + τ) = 0,

2m ≤ t ≤ 2m+1 − 2 − τ (7)

m2(t − 1 − j) + m1(t + i + τ − 1) = 0,

2m+1 − 1 − τ ≤ t ≤ 2m+1 − 2. (8)

Equations (5) and (7) tell us that

m1(t + j) = m1(t + i + τ)

and
m2(t − 1 − j) = m2(t − 1 − i + τ)

for consecutive 2m − 1 − τ values of t. Thus if τ <
2m−max(L1, L2), i.e., 2m−1−τ ≥ max(L1, L2), then
we have j = i − τ = i + τ , which further tells us that
i = j and τ = 0. Note that in this case (6) and (8)
become meaningless. If τ ≥ 2m − max(L1, L2), then
(6) and (8) tell us that

m1(t + j) = m2(t − 1 − i + τ)

and
m2(t − 1 − j) = m1(t + i + τ − 1)

for consecutive τ − 1 and τ values of t, respectively,
which is impossible from Lemma 3 unless m1(t) and
m2(t) are cyclically equivalent, since τ − 1 ≥ L1 + L2.
Thus, satisfying (6) and (8) at the same time means
that m1(t) and m2(t) are cyclically equivalent and i +
j = τ − 1 = −τ , which further implies τ = 2m−1. But
τ = 2m−1 is not in the range τ ≥ 2m − max(L1, L2),
since max(L1, L2) < 2m−1.

Case 2) 0 ≤ i, j ≤ 2m − 3 and 2m ≤ τ ≤ 2m+1 − 2
In this case, si(t + τ) can be expressed as:

si(t+τ) =







































m2(t − 1 − i + τ), 0 ≤ t ≤ 2m+1 − 2 − τ

0, t = 2m − 1 − τ

m1(t + i + τ),

2m+1 − 1 − τ ≤ t ≤ 2m+1 + 2m − 3 − τ

m2(t − 2 − i + τ),

2m+1 + 2m − 1 − τ ≤ t ≤ 2m+1 − 2.

(9)

Assume sj(t) = si(t+ τ) for all t. From (2) and (9),
we have

m1(t + j) + m2(t − 1 − i + τ) = 0,

0 ≤ t ≤ 2m+1 − 2 − τ

m1(t + j) + m1(t + i + τ) = 0,

2m+1 − 1 − τ ≤ t ≤ 2m − 2

m2(t − 1 − j) + m1(t + i + τ) = 0,

2m ≤ t ≤ 2m+1 + 2m − 3 − τ

m2(t − 1 − j) + m2(t − 2 − i + τ) = 0,

2m+1 + 2m − 1 − τ ≤ t ≤ 2m+1 − 2.

Similarly to Case 1), we can deduce that sj(t) =
si(t + τ) implies i = j and τ = 0.

Case 3) 2m − 1 ≤ i, j ≤ 2m+1 − 3 and 0 ≤ τ ≤ 2m − 2

In this case, si(t + τ) can be expressed as:

si(t+τ) =







































m1(t + i + τ), 0 ≤ t ≤ 2m − 2 − τ

1, t = 2m − 1 − τ

m2(t − 1 − i + τ) + 1,

2m − τ ≤ t ≤ 2m+1 − 2 − τ

m1(t + i + τ − 1),

2m+1 − 1 − τ ≤ t ≤ 2m+1 − 2.

(10)

Assume sj(t) = si(t + τ) for all t. From (3) and
(10), we have

m1(t + j) + m1(t + i + τ) = 0,

0 ≤ t ≤ 2m − 2 − τ (11)

m1(t + j) + m2(t − 1 − i + τ) = 1,

2m − τ ≤ t ≤ 2m − 2 (12)

m2(t − 1 − j) + m2(t − 1 − i + τ) = 0,

2m ≤ t ≤ 2m+1 − 2 − τ (13)

m2(t − 1 − j) + m1(t + i + τ − 1) = 1,

2m+1 − 1 − τ ≤ t ≤ 2m+1 − 2. (14)

Using the similar argument in Case 1), we can derive
contradiction for some of (11)–(14) from Lemma 3.

Case 4) 2m − 1 ≤ i, j ≤ 2m+1 − 3 and 2m ≤ τ ≤
2m+1 − 2

In this case, si(t + τ) can be expressed as:

si(t + τ) =






































m2(t − 1 − i + τ) + 1, 0 ≤ t ≤ 2m+1 − 2 − τ

0, t = 2m − 1 − τ

m1(t + i + τ),

2m+1 − 1 − τ ≤ t ≤ 2m+1 + 2m − 3 − τ

m2(t − 2 − i + τ) + 1,

2m+1 + 2m − 1 − τ ≤ t ≤ 2m+1 − 2.

(15)



Assume sj(t) = si(t + τ) for all t. From (3) and
(15), we have

m1(t + j) + m2(t − 1 − j + τ) = 1,

0 ≤ t ≤ 2m+1 − 2 − τ (16)

m1(t + j) + m1(t + i + τ) = 0,

2m+1 − 1 − τ ≤ t ≤ 2m − 2 (17)

m2(t − 1 − j) + m1(t + i + τ) = 1,

2m ≤ t ≤ 2m+1 + 2m − 3 − τ (18)

m2(t − 1 − j) + m2(t − 2 − j + τ) = 0,

2m+1 + 2m − 1 − τ ≤ t ≤ 2m+1 − 2. (19)

Using the similar argument in Case 1), we can derive
contradiction for some of (16)–(19) using Lemma 3.

Case 5) 2m − 1 ≤ i ≤ 2m+1 − 3, 0 ≤ j ≤ 2m − 2, and
0 ≤ τ ≤ 2m − 2

In this case, 2m − 1 ≤ i ≤ 2m+1 − 3, si(t + τ) can
be expressed as:

si(t+τ) =







































m1(t + i + τ), 0 ≤ t ≤ 2m − 2 − τ

1, t = 2m − 1 − τ

m2(t − 1 − i + τ) + 1,

2m − τ ≤ t ≤ 2m+1 − 2 − τ

m1(t + i + τ − 1),

2m+1 − 1 − τ ≤ t ≤ 2m+1 − 2.

(20)

Assume sj(t) = si(t + τ) for all t. From (2) and
(20), we have

m1(t + j) + m1(t + i + τ) = 0,

0 ≤ t ≤ 2m − 2 − τ (21)

m1(t + j) + m2(t − 1 − i + τ) = 1,

2m − τ ≤ t ≤ 2m − 2 (22)

m2(t − 1 − j) + m2(t − 1 − i + τ) = 1,

2m ≤ t ≤ 2m+1 − 2 − τ (23)

m2(t − 1 − j) + m1(t + i + τ − 1) = 0,

2m+1 − 1 − τ ≤ t ≤ 2m+1 − 2. (24)

Similarly to Case 1), we can also derive contradic-
tion for some of (21)–(24) using Lemma 3.

Case 6) 2m − 1 ≤ i ≤ 2m+1 − 3, 0 ≤ j ≤ 2m − 2, and
2m ≤ τ ≤ 2m+1 − 2

In this case, si(t + τ) can be expressed as:

si(t + τ) =






































m2(t − 1 − i + τ) + 1, 0 ≤ t ≤ 2m+1 − 2 − τ

0, t = 2m − 1 − τ

m1(t + i + τ),

2m+1 − 1 − τ ≤ t ≤ 2m+1 + 2m − 3 − τ

m2(t − 2 − i + τ) + 1,

2m+1 + 2m − 1 − τ ≤ t ≤ 2m+1 − 2.

(25)

Assume sj(t) = si(t + τ) for all t. From (2) and
(25), we have

m1(t + j) + m2(t − 1 − i + τ) = 1,

0 ≤ t ≤ 2m+1 − 2 − τ (26)

m1(t + j) + m1(t + i + τ) = 0,

2m+1 − 1 − τ ≤ t ≤ 2m − 2 (27)

m2(t − 1 − j) + m1(t + i + τ) = 0,

2m ≤ t ≤ 2m+1 + 2m − 3 − τ (28)

m2(t − 1 − j) + m2(t − 2 − i + τ) = 1,

2m+1 + 2m − 1 − τ ≤ t ≤ 2m+1 − 2. (29)

Using the similar argument in Case 1), we derive
contradiction for some of (26)–(29) using Lemma 3.

Case 7) τ = 2m − 1
In this case, it is straightforward that si(t + τ) 6=

sj(t), 0 ≤ i, j ≤ 2m+1 − 3.
From the above 7 cases, we proved that si(t) and

sj(t) are cyclically distinct for all i and j. Thus, we
proved that the set of sequences si(t) satisfies Property
2. ¤

Note that the conditions for linear spans of m1(t)
and m2(t) in Theorem 4 are sufficient not necessary.
Even though we cannot directly apply Theorem 4 to
the Legendre sequence with m1(t) = m2(t), whose lin-
ear span is half of the period, we can see that all si(t)
constructed from Legendre sequence are also cyclically
distinct because the run lengths of 1 in the difference
sequence of Legendre sequence and its cyclic shift can-
not exceed 2m−1 − 1.

Using Theorem 1 and the column sequence sets in
Theorem 4, we can construct the binary LCZ sequence
sets as in the following theorem.

Theorem 5 Let n and m be integers such that (m +
1)|n and T = (2n−1)/(2m+1−1). Let α be a primitive
element in F2n and β = αT be a primitive element in
F2m+1 . Let h(x) from F2n to F2m+1 be a 1-form func-
tion over F2m+1 with balance and difference-balance
property, i.e., either a 2m+1-ary m-sequence, a 2m+1-
ary GMW sequence, or a 2m+1-ary generalized GMW
sequence. Let fi(β

t) = si(t), where si(t) is the binary
sequence defined in Theorem 4. Then the sequence set
B defined by

B = {vi(t) = fi(h(αt)) | 0 ≤ i ≤ 2m+1 − 2,

0 ≤ t ≤ 2n − 2}

is a binary LCZ sequence set with parameters (2n −
1, 2m+1 − 1, T, 1). ¤

Tang, Fan, and Matsufuji [9] derived the lower
bound on LCZ sequences using the Welch bound [10].

Using Tang-Fan-Matsufuji bound given as

DZ − 1 ≤
N − 1

1 − ǫ2/N
(30)



we can check the optimality of our binary LCZ se-
quence set B.

Corollary 6 The binary LCZ sequence set B in The-
orem 5 is optimal with respect to the Tang-Fan-
Matsufuji bound.

Proof: The proof is straightforward. By substituting
N = 2n − 1, D = 2m+1 − 1, and ǫ = 1 in (30), we have

(2m+1 − 1)Z − 1 ≤
2n − 2

1 − 1/(2n − 1)

and thus

Z ≤
2n

2m+1 − 1
.

Since Z is an integer, we have

Z ≤

⌊

2n

2m+1 − 1

⌋

=
2n − 1

2m+1 − 1
= T.

Clearly, B is optimal with respect to the Tang-Fan-
Matsufuji bound. ¤
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