Multicode MIMO Systems with Quaternary LCZ and ZCZ Sequences
Jae-Dong Yang*, Xianglan Jin, Kyoungh-Young Song, Jong-Seon No*, Dong-Joon Shin**

*Department of Electrical Engineering and Computer Sciences, INMC
Seoul National University (xianglan.jin, yj.dong, sky6174@ecl.snu.ac.kr, jsno@snu.ac.kr)
**Division of Electronics and Computer Engineering, Hanyang University
dishin@hanyang.ac.kr

요 약
이 논문은 확산 부호로서 4진 낮은 상관 구역 (low correlation zone: LCZ) 수열과 영 상관 구역 (zero correlation zone: ZCZ) 수열을 이용한 다중 부호 다중 입력력 (multicode multiple-input multiple-output: multicode MIMO) 시스템을 제안한다. 4진 LCZ와 ZCZ 수열은 상관 범위에 대한 영역 차이가 정해진 상관 구역 안에 있을 때, 낮은 상관 값을 갖기 때문에, 시스템의 전송 성능이 높아진다. 제안된 시스템의 비트 오류 확률을 이론적으로 분석하고 이를 모의실험을 통해 확인한다.

1. 서론

2. 시스템 모델

4진과 4진의 송신 안테나를 갖는 multicode MIMO 시스템을 고려한다. 각 송신 안테나는 4진의 확산 부호로 갖는 동일한 확산 부호 집합 {c(1), c(2), ..., c(L)}를 사용한다. 그림 1은 multicode MIMO 시스템을 보여준다. 이 시스템은 QPSK 변환을 사용하고, 확산 부호로서 4진 LCZ와 ZCZ 수열을 사용한다. 확산 부호는 주기 조차여야 하며 각 주기는 서로 각각 K개의 실험 수준으로 나누어진다. 한 섹션에 따른 n 번째 송신 안테나에서 보내지는 신호는 다음과 같다.

\[x_n(t) = \sum_{l=1}^{K} d_{nl} c_l(t), n = 1, 2, ..., N \quad 0 \leq t \leq GT_c \] (1)

여기서 \(d_{nl} \)는 n 번째 송신 부호 \(c_l \)에 대한 n 번째 안테나에서의 데터 전송, \(T_c \)는 집의 주기로 나눈다. \(L \)개의 다중 경로에 대한 둘 번째 송신 안테나에서 m 번째 송신 안테나에 쌍화 실험의 컨트롤 패턴을 다음과 같이 주어진다.

\[h_{nm}(t) = \sum_{l=3}^{L} h_{l,n} b(t - \tau_l) \] (2)

\(h_{nm} \)은 n 번째 송신 안테나에서 m 번째 송신 안테나의 \(l \) 번째 다중경로의 셀레나인과 경로 평균이 0인 별도의 시간 분포를 따른다. \(\delta \)는 데터 전송, \(\tau_l \)는 \(l \) 번째 다중경로의 시간 지연을 나타낸다. \(\tau_l = l T_c \)를 가정하고 \(L \leq L \)을 가정한다. 제수적인 다중 경로 세
기울 가정하면 절단계수의 정책 \(P_1 = \mathbb{E}[h_{\text{env}}] \)은 지수 분포를 따른다. 즉 \(P_1 = \mathbb{E}[h_{\text{env}}] \)이고, \(\sum_{i=1}^{\mathbb{E}[h_{\text{env}}]} T_i = 1 \)이다. 여기서 \(T_i \)는 지수 감쇄율을 나타낸다.

시간 \(t \)에 \(m \)-번째 수신 안테나에서의 수신 신호는 식 (1)과 (2)를 이용하면 다음 수식 (3)과 같이 나타날 수 있다.

\[
R_n(t) = \sum_{n=1}^{\mathbb{E}[h_{\text{env}}]} \sum_{i=1}^{\mathbb{E}[h_{\text{env}}]} d_{m} \delta_{m}(t-i \cdot T_e) + n_n(t)
\]

(3)

여기서 \(n_n(t) \)는 가산성 백색 가우시안 잡음을 나타낸다.

이 논문에서는 확산 후보지로 \(Z_4 = (0,1,2,3) \) 중 하나의 값을 갖는 4진 LCZ 수열과 ZCZ 수열을 사용하는 multicode MIMO 시스템을 제안하고 그 성능을 분석한다. QPSK 싱볼은 \(Z_4 \)의 싱볼과 동일하기 때문에 4진 LCZ 수열과 ZCZ 수열을 복소 확산 부호로 사용할 수 있다. 아래의 절에서 4진 LCZ 수열과 ZCZ 수열의 성능에 대해 간략히 소개하고, 결과 기여에 대해서 설명한다.

A. 4진 LCZ 수열과 ZCZ 수열

LCZ 수열과 ZCZ 수열은 시계 차이가 설정된 상관 구간 내에 있을 때, 각각 낮은 상관 값의 영역 상관 값을 갖는 수열이라고 [5, 6]에 따르면 4진 LCZ 수열은 ZCZ 수열과 성능을 갖는다.

4진 LCZ 수열의 생성법은 다음과 같다. \(b(t) \)를 주기 \(N = 2^{s} - 1 \) 인 \(b(t) \) 수열이라 하자. \(s \)과 \(M = 2^{s} - 1 \)을 가정하면 LCZ 수열 \(a_i(t) \), \(i = 1, \ldots, M - 1 \)은 다음과 같이 생성될 수 있다.

\[
a_{i}(t) = 2b(t)
\]

(4)

\[
A_{i}(t) = b(t) + 2b(t+iS), \quad i = 1, \ldots, M - 1
\]

\(M \)는 LCZ 수열의 해밀터 크기이고, LCZ의 크기는 \((1, M) \)이다. 두 LCZ 수열들 사이의 관계를 통해서 간단한 관계를 가질 수 있다. LCZ의 크기를 \((1, M) \)로 추정할 때 LCZ 수열의 해밀터 크기는 \(M \)에 달한 수준을 초과할 수 있다. \(i \), \(i = 1, 2, \ldots, M \)과 \(j \), \(j = 0, 1, \ldots, m \)에 대해 다음과 같이 수열을 생성할 수 있다.

\[
a_{i+m}(t) = a_i(t) \quad (j = 0, \ldots, m-1)
\]

여기서 \(i \cdot S \)는 \(i \)의 \(M \)보다 적거나 같은 최적 정수를 나타내며, 이 수열을 사용하여 \(i = 1, 2, \ldots, M \)으로 생각할 수 있다. 이 수열들이 순환적으로 다르지 않으므로 multicode MIMO 시스템에서의 다른 LCZ 수열은 사용될 수 있다.

4진 ZCZ 수열은 완전히 자기 상관 성질을 갖는 4진 perfect 수열을 이용하여 생성한다. [6]. \(b(t) \)를 perfect 수열이라 하면, ZCZ 수열은 다음과 같이 생성될 수 있다.

\[
a_{i}(t) = 2b(t) - b(t), \quad i = 1, \ldots, M - 1
\]

(6)

\[
a_{i+M}(t) = a_i(t) \quad (j = 0, \ldots, m-1)
\]

여기서 \(M \)는 \(ZCZ \) 수열의 크기이고, \(M \)는 ZCZ 수열의 해밀터 크기이다.

B. 검증 기법

\(k \)개의 다른 지연 다중 경로 신호가 있고 \(k \)개의 평가기를 갖는 그림 1. Multicode MIMO 시스템

\[
y_{k} = \mathbb{H}d_k + \sum_{l=k}^{k} \mathbb{J}_{d_l} + n_k
\]

(11)

여기서 \(y_k = \left[y_{k-1} \ldots y_{k-L} \ldots y_{k-k} \right] \)는 \(k \)번째 수신 안테나의 수신 신호를 나타낸다. \(d_k = d_{k-1} \ldots d_{k-L} \)은 \(k \)번째수신 안테나의 \(k \)번째 수신 신호를 나타낸다. \(\mathbb{H} \)는 \(k \)번째 수신 안테나의 \(k \)번째 수신 신호를 나타낸다. \(\mathbb{J}_{d_l} \)는 \(d_l \)번째 수신 안테나의 \(k \)번째 수신 신호를 나타낸다.

마지막으로, 식 (11)은 기존의 MIMO 시스템과 유사하다. 따라서 \(d_{k} \)를 검증
가장 우측 공분산 행렬이 다음과 같다.

\[E[\boldsymbol{h}(t)^H\boldsymbol{e}(t)] = \begin{bmatrix} R_{b}\varepsilon & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{b}\varepsilon \\
\end{bmatrix} = \sigma^2 G \]

여기서 \(\sigma^2 = E[|p(t)|^2] \)이고, \(R_{b}\varepsilon \)는 (11)에서 정의된 확산 부호 \(c_{b}(t) \)의 자기 상관 행렬이다. 나머지 조건에 따라 \(\sigma^2 \)는 유도한다.

공간 영역의 SIC에서의 데이터 싱글 검출의 정점은 SINR에 의해 결정된다. 즉, 가장 큰 SINR 값을 가진 데이터 싱글들이 가장 먼저 검출된다. 이는 다음의 메트릭에 따른 최소 간섭과 검출 정점의 가장 데이터 싱글을 검출함을 의미한다.

\[\min_{p(\cdot)} \left[\begin{bmatrix} H_{\alpha}(j)^H \sum_{i=1}^{K-1} \mathbf{J} d_i^H \mathbf{H}_{\alpha}(j)_i^H \right]_{p(\cdot)}^H + \sigma^2 G(\mathbf{H}_{\alpha}(j))_i(\mathbf{H}_{\alpha}(j)_i)^H \right] \left(\mathbf{H}_{\alpha}(j)_i^H \right)^{-1} \]

여기서 \(\cdot \)는 \(p(\cdot) \)하여 다각식을 나타낸다. 데이터 싱글의 진

\[P_{e} = B \begin{bmatrix} \mathbf{J} \mathbf{d}_i \end{bmatrix} = \begin{bmatrix} R_{b} e^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{b} e^2 \\
\end{bmatrix} = \sigma^2 G \]

공간 영역의 SIC에서의 데이터 싱글 검출의 정점은 SINR에 의해 결정된다. 즉, 가장 큰 SINR 값을 가진 데이터 싱글들이 가장 먼저 검출된다. 이는 다음의 메트릭에 따른 최소 간섭과 검출 정점의 가장 데이터 싱글을 검출함을 의미한다.

\[\min_{p(\cdot)} \left[\begin{bmatrix} H_{\alpha}(j)^H \sum_{i=1}^{K-1} \mathbf{J} d_i^H \mathbf{H}_{\alpha}(j)_i^H \right]_{p(\cdot)}^H + \sigma^2 G(\mathbf{H}_{\alpha}(j))_i(\mathbf{H}_{\alpha}(j)_i)^H \right] \left(\mathbf{H}_{\alpha}(j)_i^H \right)^{-1} \]

여기서 \(\cdot \)는 \(p(\cdot) \)하여 다각식을 나타낸다. 데이터 싱글의 진

\[P_{e} = B \begin{bmatrix} \mathbf{J} \mathbf{d}_i \end{bmatrix} = \begin{bmatrix} R_{b} e^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{b} e^2 \\
\end{bmatrix} = \sigma^2 G \]

공간 영역의 SIC에서의 데이터 싱글 검출의 정점은 SINR에 의해 결정된다. 즉, 가장 큰 SINR 값을 가진 데이터 싱글들이 가장 먼저 검출된다. 이는 다음의 메트릭에 따른 최소 간섭과 검출 정점의 가장 데이터 싱글을 검출함을 의미한다.

\[\min_{p(\cdot)} \left[\begin{bmatrix} H_{\alpha}(j)^H \sum_{i=1}^{K-1} \mathbf{J} d_i^H \mathbf{H}_{\alpha}(j)_i^H \right]_{p(\cdot)}^H + \sigma^2 G(\mathbf{H}_{\alpha}(j))_i(\mathbf{H}_{\alpha}(j)_i)^H \right] \left(\mathbf{H}_{\alpha}(j)_i^H \right)^{-1} \]

여기서 \(\cdot \)는 \(p(\cdot) \)하여 다각식을 나타낸다. 데이터 싱글의 진

\[P_{e} = B \begin{bmatrix} \mathbf{J} \mathbf{d}_i \end{bmatrix} = \begin{bmatrix} R_{b} e^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{b} e^2 \\
\end{bmatrix} = \sigma^2 G \]

공간 영역의 SIC에서의 데이터 싱글 검출의 정점은 SINR에 의해 결정된다. 즉, 가장 큰 SINR 값을 가진 데이터 싱글들이 가장 먼저 검출된다. 이는 다음의 메트릭에 따른 최소 간섭과 검출 정점의 가장 데이터 싱글을 검출함을 의미한다.

\[\min_{p(\cdot)} \left[\begin{bmatrix} H_{\alpha}(j)^H \sum_{i=1}^{K-1} \mathbf{J} d_i^H \mathbf{H}_{\alpha}(j)_i^H \right]_{p(\cdot)}^H + \sigma^2 G(\mathbf{H}_{\alpha}(j))_i(\mathbf{H}_{\alpha}(j)_i)^H \right] \left(\mathbf{H}_{\alpha}(j)_i^H \right)^{-1} \]

여기서 \(\cdot \)는 \(p(\cdot) \)하여 다각식을 나타낸다. 데이터 싱글의 진

\[P_{e} = B \begin{bmatrix} \mathbf{J} \mathbf{d}_i \end{bmatrix} = \begin{bmatrix} R_{b} e^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{b} e^2 \\
\end{bmatrix} = \sigma^2 G \]

공간 영역의 SIC에서의 데이터 싱글 검출의 정점은 SINR에 의해 결정된다. 즉, 가장 큰 SINR 값을 가진 데이터 싱글들이 가장 먼저 검출된다. 이는 다음의 메트릭에 따른 최소 간섭과 검출 정점의 가장 데이터 싱글을 검출함을 의미한다.

\[\min_{p(\cdot)} \left[\begin{bmatrix} H_{\alpha}(j)^H \sum_{i=1}^{K-1} \mathbf{J} d_i^H \mathbf{H}_{\alpha}(j)_i^H \right]_{p(\cdot)}^H + \sigma^2 G(\mathbf{H}_{\alpha}(j))_i(\mathbf{H}_{\alpha}(j)_i)^H \right] \left(\mathbf{H}_{\alpha}(j)_i^H \right)^{-1} \]

여기서 \(\cdot \)는 \(p(\cdot) \)하여 다각식을 나타낸다. 데이터 싱글의 진

\[P_{e} = B \begin{bmatrix} \mathbf{J} \mathbf{d}_i \end{bmatrix} = \begin{bmatrix} R_{b} e^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{b} e^2 \\
\end{bmatrix} = \sigma^2 G \]

공간 영역의 SIC에서의 데이터 싱글 검출의 정점은 SINR에 의해 결정된다. 즉, 가장 큰 SINR 값을 가진 데이터 싱글들이 가장 먼저 검출된다. 이는 다음의 메트릭에 따른 최소 간섭과 검출 정점의 가장 데이터 싱글을 검출함을 의미한다.

\[\min_{p(\cdot)} \left[\begin{bmatrix} H_{\alpha}(j)^H \sum_{i=1}^{K-1} \mathbf{J} d_i^H \mathbf{H}_{\alpha}(j)_i^H \right]_{p(\cdot)}^H + \sigma^2 G(\mathbf{H}_{\alpha}(j))_i(\mathbf{H}_{\alpha}(j)_i)^H \right] \left(\mathbf{H}_{\alpha}(j)_i^H \right)^{-1} \]

여기서 \(\cdot \)는 \(p(\cdot) \)하여 다각식을 나타낸다. 데이터 싱글의 진

\[P_{e} = B \begin{bmatrix} \mathbf{J} \mathbf{d}_i \end{bmatrix} = \begin{bmatrix} R_{b} e^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{b} e^2 \\
\end{bmatrix} = \sigma^2 G \]
그림 2. QPSK와 2차원 SIC를 사용한 4×4 multicode MIMO 시스템의 성능 비교.

그림 3. $K=8, L=3$일 때, QPSK를 사용한 4×4 multicode MIMO 시스템의 2차원 SIC와 1차원 SIC의 성능 비교.

앞의 세부의 크기는 2개로 설정할 수 있다. $G=64$를 위해 모두 4
전 LCZ 수열로 0이 추가된다. 4 ZCZ 수열은 주기 8이 4전
perfect 수열 $(0,0,1,0,0,1,0)$ 을 식 (6)에 적용하여 생성할 수
있다. $G=64$와 $M=8$이 되기 위해, 식 (6)에서 M번 반복
을 거친다. 기존의 multicode MIMO 시스템은 $G=32$의 한
양의 2인 Hadamard 부호로부터 생성된 4전 확산 부호에 의해 특수
확률임을 가정한다.

그림 2(a)는 $K=4$이고 $K=8$일 때, multicode MIMO 시스템과 2인
Hadamard 부호를 이용한 기존의 multicode MIMO 시스템의 비드 오류 확률을 비교한다. $L=1$일 때, 적, 자연에 따른 성
능 선호가 없을 때, 세 가지 시스템의 성능 차이가 거의 없다. 그러나 $L>1$일 때에는 기존의 multicode MIMO 시스템에서는 부호
영역의 간격에 의해 오류 확률이 낮아진다. 이는 일반
적 제한된 시스템은 오류 확률이 낮은 L의 값에 따라서 기존의
시스템보다는 좋은 성능을 보인다. 그림 2(b)는 $L=3$일 때, 다양한
K 값에 따른 비드 오류 확률을 비교한다. 기존의 시스템은 K 값에
따라 나쁜 성능을 보이지만, 제안한 시스템은 4전 LCZ 수열
의 성능 특성에 의해 좋은 성능 확률을 보인다.

그림 3에서는 2차원 SIC와 1차원 SIC 간의 성능을 비교한다. 예
상한 둘 중 갑 1차원 SIC를 사용한 경우, 제안한 시스템에서는 성
능 열락을 거의 보이지 않지만, 기존의 multicode MIMO 시스템
에서는 상당한 성능 열락을 보인다. 따라서 제안된 multicode MIMO
시스템에서는 1차원 SIC 사용만으로도 좋은 성능을 얻을 수 있다.

그림 4는 4전 ZCZ 수열을 이용한 multicode MIMO 시스템의 이
론적 결과와 시뮬레이션 결과를 나타낸다. 오류 전이가 있다고 가정할
때의 모의 실험 결과는 낮은 SNR 영역에서 악연의 성능 차이를 보
인한다. 또한 모의 엑스트림을 가정한 모의 실험 결과는 모든 SNR 영역에 대
해 이론적 결과와 일치한다.

문헌
1. G. J. Foschini and M. J. Gans, "On limits of wireless
communications in a fading environment when using
2. "TS 25.213 version 3.0.0, Spreading and Modulation
(FDD)," 3GPP TSG-RAN, 1999.
3. "Physical layer aspects of UTRA High Speed Downlink
4. C.-S. Park and K.-B. Lee, "Transmit power allocation
for successive interference cancellation in multicode MIMO
constructions of quaternary low correlation zone
6. H. Torii, M. Nakamura, and N. Sushiro, "A new class of
zero-correlation zone sequences," IEEE Trans. Inf. Theory,
7. R. De Guzmán, C. Bilsa, and R. Viola, "Bandlimited
quasiasynchronous CDMA: A novel satellite access
technique for mobile and personal communication system,
Valenzuela, "V-BLAST: An architecture for realizing very
high data rates over the rich-scattering wireless channel,