직교 주파수 분할 다중화 시스템에 적용되는 선택사상기법에서 위상 벡터에 대한 연구

허석중, *주현승*, *노종선*, **임대웅**, ***신동준***
서울대학교 전기컴퓨터공학부, 뉴미디어통신공동연구소
동국대학교 정보통신공학부*
한양대학교 전자통신컴퓨터공학부

Research on Phase Vectors in SLM Schemes for OFDM System

Seok-Joong Heo, *Hyun-Seung Joo*, *Jong-Seon No*, *Dae-Woon Lim*, and **Dong-Joon Shin
Department of the EECS, INMC, Seoul National University
Department of the ICE, Dongguk University*
Department of the ECE, Hanyang University,
{hsjbest, joohs}@ccl.snu.ac.kr, jsno@snu.ac.kr, daewoonlim@gmail.com, djshin@hanyang.ac.kr

요약
본 논문에서는 직교 주파수 분할 다중화 (orthogonal frequency division multiplexing: OFDM) 시스템에 적용되는 선택사상 기법 (selected mapping: SLM)에서 상관관계가 있는 위상벡터를 이용할 때 침도전력 대 평균전력의 비 (peak-to-average power ratio: PAPR)의 감소 성능에 대해서 분석하였다. Lim과 Zhou는 SLM에서 이용되는 위상벡터를 최적으로 설계하는 조건으로 직교성과 비주기성을 가진 벡 할을 증명하였으나, 본 논문에서는 위상벡터가 최적의 조건이 아닌 경우에 초점을 두고있다. 다변수 gamma 확률 함수를 이용하여 구한 CCDF가 γ 보다 클 확률인 상보 누적함수 (complementary cumulative distribution function: CCDF)를 유도하였고 해석적으로 구한 CCDF와 모의실험을 통해서 얻은 CCDF가 유사함을 보인다.

1. 개요
최근 무선 통신에서는 직교 주파수 분할 다중화 (orthogonal frequency division multiplexing: OFDM) 전송방식이 무선랜과 디지털 비디오 방송 (digital video broadcasting: DVB), 디지털 오디오 방송 (digital audio broadcasting: DAB)등의 핵심 기술로 이용되고 있다. OFDM은 주파수 선택적 페이딩에 강한 무선 환경에서의 고속 데이터 전송에 갖장받고 있다. 그러나, OFDM은 입력전력 대 평균전력의 비 (peak-to-average power ratio: PAPR)가 매우 크고 이것은 고전력 증폭기에서 대역내 왜곡과 대역외 방사와 같은 신호의 왜곡을 야기하여 비트오류율 (bit error rate: BER)을 악화시킨다. 따라서, PAPR를 줄이기 위해 OFDM 시스템을 연구하는데 있어 중요한 연구분야로 자리잡게 되었다.
PAPR를 줄이기 위해 제안된 선택 사상 기법 (selected mapping: SLM)은 그 성능을 개선하기 위해 서로 다른 신호의 값들을 증가시켜야 하며 따라서 많은 위상 벡터를 필요로 한다. 또한, 위상벡터의 수가 증가할수록 SLM의 출력 신호를 얻기 위해 위상벡터의 수만큼의 역 편리에 변환을 필요로 하여 연산량은 위상벡터의 수에 비례하여 증가하게 된다. 연산량이 많은 SLM을 이용할 때 최적의 성능을 얻기 위해서 요구되는 위상벡터의 조건은 Lim과 Zhou에 의해 직교성 (orthogonality)과 비주기성 (aperiodicity)으로 제시되었다 [1], [2]. 본 논문에서는 위상벡터가 최적의 조건을 가지지 못할 때 PAPR 감소 성능을 알아보는것에 목표를 두고 있다.
본 논문에서는 상관관계를 갖는 위상벡터를 이용한 SLM의 PAPR 감소 정도에 대해서 분석하고 있으며 다음의 두가지로 구성되어 있다. 본 논문은 2장에서 OFDM 시스템과 SLM 방법에 대해서 설명을 하고 3장에서는 상관관계를 갖는 위상벡터를 이용한 경우에 대해 PAPR의 CCDF가 분석되었다. 4장에서는 3장의 결과로부터 얻은 해석적인 결과와 모의실험으로부터 얻은 결과를 비교하고 5장에서는 결론을 내린다.
2. 시스템 모델과 첨두전력대 평균전력의 비

본 장에서는 기저매개의 OFDM 시스템 모델에 대해 제시하고 제시된 모델에서 SLM을 이용하여 PAPR를 줄이기 위한 방법을 살펴본다.

A. OFDM 시스템 모델

부 반복관과 N개의 OFDM 시스템의 입력으로 \(A = [a_0 \ A_1 \cdots \ A_{N-1}]^T \)가 입력 심볼 벡터로 주어진다고 하면 \(A_k \)가 \(k \)-번째 부반복관에 의한 전송되는 별소계를 갖는 데이터를 의미한다. \(a_n \)의 역 푸리에 변환 (inverse discrete Fourier transform; IDFT)에 의해서 생성된 OFDM 신호의 Nyquist rate로 샘플링한 신호이고 \(a_n \)의 실수부를 \(x_n \) 허수부를 \(y_n \)이라고 하면 \(a_n \)은 다음과 같이 표현된다.

\[
a_n = x_n + jy_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} A_k e^{j2\pi nk/N}, \quad n = 0, 1, \cdots, N-1.
\]

(1)

여기서, \(x_n \)과 \(y_n \)은 \(N \)이 커질수록 중심 극점의 정리에 의해 평균이 0이고 분산이 \(\sigma^2 \)인 Gaussian 분포를 갖는다. (1)은 \(N \times N \) IDFT 행렬을 통해 \(a = QA = [a_0 a_1 \cdots a_{N-1}]^T \)와 같이 벡터의 형태로 표현될 수 있다. 여기서 \(Q \)는 \(N \times N \) IDFT 행렬이다.

이전의 논문에서는 SLM의 성능을 분석할 때 사용되는 위상벡터가 최적의 성능을 갖는다고 가정했다. 그러나 상관관계를 갖는 위상벡터를 이용한 SLM을 분석하려고 하면 이를 위해 서로 다른 OFDM 신호의 첨두전력의 분포를 유도해야 한다. Nyquist rate로 샘플링된 신호의 전력이 \(P_n \)이라고 하면 \(p_n = |a_n|^2 = a_n^*a_n = x_n^2 + y_n^2 \)\(0 \leq n \leq N-1 \)와 같이 표현된다. 먼저 시간 영역에서의 OFDM 신호가 갖는 순서 전력 \(P = [p_0 \ p_1 \cdots \ p_{N-1}]^T \)을 분석한다. \(N \)의 값이 크게 \(a_n \)은 서로 독립이라고 가정할 수 있고 복소 Gaussian 변수인 \(a_n \)의 전력 \(p_n \)은 자유도가 2인 chi-square 랜덤변수이다. 본 논문에서는 다변수의 경우에 대하여 고려해야 하므로 chi-square를 일반화한 gamma 분포를 이용한다. Gamma는 다음과 같이 표현된다.

\[
f_\gamma(p_n) = \frac{\lambda^\alpha}{\Gamma(\alpha)} p_n^{\alpha-1} \exp(-\lambda p_n)
\]

(2)

여기서 \(\Gamma(\alpha) \)는 gamma 함수로 \(a \)가 정수값을 갖는 경우 \(\Gamma(a) = (a-1)! \)와 같이 표현된다. Chi-square 분포는 \(\alpha = 1 \)이고 \(\lambda = 1/2 \)인 gamma 분포에 의해 표현될 수 있다 [3].

이번 시간 영역에서 OFDM 신호의 PAPR는 다음과 같이 정의되는 랜덤 변수로 생각할 수 있다.

\[
\text{PAPR}(a) = \max_{0 < \alpha < N-1} |a_n|^2
\]

(3)

여기서, \(P_{av}(a) \)는 다음 수식과 같이 \(a \)의 평균값을 의미한다.

\[
P_{av}(a) = \frac{1}{N} \sum_{n=0}^{N-1} E[|a_n|^2]
\]

(4)

평균전력이 1이라고 가정하면 첨두전력 값이 곧 PAPR가 된다. \(\text{PAPR} = |a|^2 \) 시간영역에서의 OFDM 신호 \(a \)의 \(N \)개의 서로 독립인 샘플값에서 적어도 하나의 첨두 전력이 우리가 원하는 임계치 \(\gamma_0 \)보다 클 확률은 gamma 분포함수를 이용하여 \(\alpha = 1, \lambda = 1/2 \)인 경우 다음과 같이 표현된다 [4].

\[
\Pr(\text{PAPR} > \gamma_0) = 1 - \left(\frac{1}{1 - e^{-\frac{\gamma_0}{2}}} \right)^N
\]

(5)

B. 선택 사상 기법

SLM은 넓역과 대역의 방사를 일으키지 않는다는 장점을 가지고 있지만 선택된 위상벡터에 대한 정보를 알리기 위해 부가정보를 전송해야 한다는 단점이 있다. 입력 심볼 벡터 \(A \)는 위상 벡터 \(P(u) = [p_0(u) \ p_1(u) \cdots \ p_{N-1}(u)]^T, 1 \leq u \leq U \)와 동일한 주파수의 값을 갖는 (component-wise multiplication) 서로 다른 입력 심볼 벡터 \(A(u) \)를 다음 수식과 같이 생성한다.

\[
A(u) = \tilde{A}(u) = [a_0(u) \ a_1(u) \cdots a_{N-1}(u)]^T
\]

(6)

여기서 \(\tilde{A} \)는 \(A_0, A_1, \cdots, A_{N-1} \)을 원소로 갖는 \(N \times N \) 대각 행렬이고 위상 벡터 \(P(u) \)는 각각의 원소가 \(P_n(u) = e^{j\phi_n(u)}, \phi_n(u) \in [0, 2\pi) \)와 같이 단위원자를 갖도록 생성한다. 일반적으로는 \(P_n(u) = \{ \pm 1 \} \)이나 \(\{ \pm 1, \pm j \} \)의 값을 사용한다. \(U \)개의 서로 다른 OFDM 신호가 \(U \)번의 IFFT를 통해서 표현된다.

\[
a(u) = QA(u), 1 \leq u \leq U.
\]

(7)

\(U \)개의 OFDM 신호가 동일한 정보를 나타내기 위해 각 첨두 PAPR를 갖는 OFDM 신호를 전송하고 전송된 신호의 인덱스 \(\tilde{u} \)를 포함하여 보낸다. SLM에서는 사용하는 위상 벡터의 집합 \(P = \{P(1), P(2), \cdots, P(U)\} \)를 선택하는 기준의 성능에 중요한 영향을 미친다. 최적의 위상벡터의 조건을 만족하지 못하는 경우, 즉, 위상벡터가 상관관계를 가지면 SLM의 성능을 알아보는 것은 의미가 있다.

3. 상관관계가 있는 위상벡터를 이용한 SLM의 분석

A. SLM에서 상관관계가 있는 위상벡터를 이용하였을 때 PAPR의 분포

OFDM 시스템에서 SLM을 이용하여 PAPR를 감소시키는 경우 첨두 전력의 분포는 심볼이 갖는 전력 \(p_k(u) = |a_k(u)|^2, 1 \leq u \leq U \)의 분포로 표현될 수 있다. 서로 다른 OFDM 신호가 갖는 전력은 벡터 형태로 표현하면 \(P(u) = [p(u)_0 \ p(u)_1 \cdots p(u)_{N-1}]^T \)와 같고 이것은 \(u \)번째 OFDM신호의 각 샘플의 전력이다. \(u \)번째 OFDM 신
\[F(p^{(1)}, p^{(2)}, p^{(3)}) = \sum_{k=0}^{\infty} \sum_{p+k+r+s=k} \sum_{i=0}^{k-p} \sum_{h=0}^{j} \binom{k-p}{i} \binom{k-r}{j} h^{2} p_{12}^i p_{23}^j p_{31}^{(k+r+s)} \gamma(i+1, p^{(1)})(j+1, p^{(2)}) \gamma(h+1, p^{(3)}) \] (15)

호의 \(k \)번째 심볼이 갖는 전력이 \(\gamma^{(a)} \)보다 클 확률을 \(F(.) \)으로 정의한다.

\[F(\gamma^{(1)}, \cdots, \gamma^{(U)}) = \Pr(p^{(1)}_k \leq \gamma^{(1)}, \cdots, p^{(U)}_k \leq \gamma^{(U)}) \] (8)

\(p^{(u)}_k \)를 \(u \)번째 OFDM 신호가 갖는 첨두 검정 \(p^{(u)}_k = \max(p^{(u)}_0, p^{(u)}_1, \cdots, p^{(u)}_{N-1}), 1 \leq u \leq U \)와 같이 정의한다. 각 OFDM 신호의 모든 심볼이 독립이라고 가정하면 서로 다른 OFDM 신호의 첨두 검정 \(p^{(1)}_k, \cdots, p^{(U)}_k \)가 각 \(\gamma^{(1)}, \cdots, \gamma^{(U)} \)보다 작을 확률은 다음과 같이 표현된다.

\[\Pr(p^{(1)}_k \leq \gamma^{(1)}, \cdots, p^{(U)}_k \leq \gamma^{(U)}) = \Pr(p^{(1)}_k \leq \gamma^{(1)}, \cdots, p^{(U)}_k \leq \gamma^{(U)}, \forall k \in [0, N]) = \left(F(\gamma^{(1)}, \cdots, \gamma^{(U)}) \right)^N. \] (9)

이때, 각 OFDM신호의 첨두 검정의 CDF는 \(F(\gamma^{(1)}, \cdots, \gamma^{(U)}) \)와 같이 표현되고 이 것은 \(\gamma^{(1)}, \cdots, \gamma^{(U)} \)의 함수이다. 따라서, OFDM신호의 첨두 검정의 확률 밀도 함수 (probability density function: pdf)는 CDF의 길이로 표현될 수 있다.

\[f_{\text{SLM}}(\gamma^{(1)}, \cdots, \gamma^{(U)}) = \frac{\partial^U}{\partial \gamma^{(1)} \cdots \partial \gamma^{(U)}} \left(F(\gamma^{(1)}, \cdots, \gamma^{(U)}) \right)^N \] (10)

\(f_{\text{SLM}} \)은 SLM 출력신호의 첨두 검정이라고 정의하면 OFDM 신호의 평균 전력이 1이라고 가정할 때 \(f_{\text{SLM}} \)은 PAPR이라고 생각할 수 있다. 따라서, PAPR가 \(\gamma \)보다 클 확률 \(\text{pdf} f_{\text{SLM}}(\gamma^{(1)}, \cdots, \gamma^{(U)}) \)를 적분하여 얻을 수 있다.

\[\Pr(\text{PAPR} > \gamma) = \int_{\gamma}^{\infty} \cdots \int_{\gamma}^{\infty} f_{\text{SLM}}(\gamma^{(1)}, \cdots, \gamma^{(U)}) d\gamma^{(1)} \cdots d\gamma^{(U)} \] (11)

수식 (11)을 연속된 편미분과 승진함을 통하여 다음과 같이 전개된다.

\[\Pr(\text{PAPR} > \gamma) = F(\gamma^{(1)}, \cdots, \gamma^{(U)}) \] (12)

예를 들어 (12)를 \(U = 2 \)와 3에 대해서 정리하면 다음과 같이 표현된다.

\[\Pr(\text{PAPR} > \gamma) = F(\gamma^{(1)}, \cdots, \gamma^{(U)}) = \begin{cases} F(\gamma^{(1)}, \cdots, \gamma^{(U)}) & \text{for } U = 1 \\ F(\gamma^{(1)}, \cdots, \gamma^{(U)}) + F(\gamma^{(1)}, \cdots, \gamma^{(U)} - \gamma^{(1)}) & \text{for } U = 2 \\ F(\gamma^{(1)}, \cdots, \gamma^{(U)}) + F(\gamma^{(1)}, \cdots, \gamma^{(U)} - \gamma^{(1)}) + F(\gamma^{(1)}, \cdots, \gamma^{(U)} - \gamma^{(1)} - \gamma^{(2)}) & \text{for } U = 3 \end{cases} \] (13)

이때, 일반적으로 주어진 다변수 chi-square 분포함수를 \(F(.) \)을 이용하면 CCDF값을 구할 수 있다. \(U = 2, 3 \)인 경우 다변수 chi-square 분포함수는 각각 (14), (15)와 같다.

\[f(p^{(1)}, p^{(2)}) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} \binom{k}{j} \frac{(-1)^{k+j}}{ij!} \gamma(i+1, p^{(1)})(j+1, p^{(2)}) \] (14)

(14)와 (15)에서 \(\gamma(. . .) \)는 lower incomplete gamma 함수를 의미한다.

B. Power변수의 상관관계

두 랜덤 변수 \(x \)와 \(y \)의 평균이 \(E[x] \)과 \(E[y] \)이고 표준 편차가 \(\sigma_x \)와 \(\sigma_y \)일 때 공분산 연산자가 \(\text{cov}(., .) \)라고 표현되면 상관계수 \(\rho_{xy} \)는 다음과 같이 정의된다.

\[\rho_{xy} = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} = \sqrt{E[x^2] - E[x]^2}(E[y^2] - E[y]^2) \] (16)

본 논문에서는 첨두 검정 간의 관계를 관심을 두고 있으므로 \(x \)와 \(y \)의 표준 편차가 \(\rho_{i}^{(1)} \)와 \(\rho_{j}^{(1)} \)로 변식을 고려하였다.

\(i \)번째 OFDM 신호의 \(i \)번째 심볼의 power \(p^{(i)}_{i} \)와 \(j \)번째 OFDM 신호의 \(j \)번째 심볼의 power \(p^{(j)}_{j} \)의 상관계수는 \(\rho_{ij}(\tau) \)와 같이 표현한다. \(\rho_{ij}(\tau) \)를 구하기 위해서는 각각 \(E[p^{(i)}_{i} p^{(j)}_{j}], E[p^{(i)}_{i}](= E[p^{(i)}_{i}]^2) \)의
그림 1. 16-QAM 데이터가 변조되어 \(N = 128\)인 OFDM 시스템의 입력으로 주어질 때 \(U = 2\)인 SLM을 이용하여 PAPR를 감소시켰을 때 다양한 상관값에 대한 모의실험 결과와 해석적인 결과에 대한 비교.

\[
E(P_{r_{t+\tau}}^{(i)})\]을 구해오며 따라서 이에 대해서 전개해 보고자 한다.

각각의 값을 구하기 위해서 \(i\)-번째 OFDM 신호의 \(t\) 번째 심볼과 \(j\)-번째 OFDM 신호의 \(t + \tau\) 번째 심볼을 정의하면 다음과 같이 표현된다.

\[
p^{(i)}_{t} = a^{(i)}_{t} a^{(i)*}_{t} = \frac{1}{N} \sum_{k=0}^{N-1} A_{k} A^{*}_{k} P_{h}^{(i)}(p_{h}^{(i)} e^{j2\pi(k-h)t})
\]

\[
p^{(i)}_{t+\tau} = a^{(i)}_{t+\tau} a^{(i)*}_{t+\tau} = \frac{1}{N} \sum_{m=0}^{N-1} A_{m} A^{*}_{m} P_{h}^{(i)}(p_{h}^{(i)} e^{j2\pi(m-n)(t+\tau)}).
\]

위의 정의를 이용하여 \(E(p^{(i)}_{t} p^{(i)}_{t+\tau})\)는 각 \(p^{(i)}_{t}\)와 \(p^{(i)}_{t+\tau}\)의 자기상관값을 구하면 다음과 같이 표현된다.

\[
E(p^{(i)}_{t} p^{(i)}_{t+\tau}) = E\left[\frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{h=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} A_{k} A^{*}_{k} A_{m} A^{*}_{m} P_{h}^{(i)}(p_{h}^{(i)} e^{j2\pi(k-h)(m-n)t}) e^{j2\pi(m-n)(t+\tau)} \right]
\]

(17)에서 \(E[A_{k} A^{*}_{k} A_{m} A^{*}_{m}]\)는 \(i) k = h = m = n, ii) k = h \neq m = n, and iii) k = n \neq h = m\)에만 0이 아닌 값을 갖게 되므로 수식(17)을 정리하면 다음과 같이 간단하게 표현된다.

\[
E[p^{(i)}_{t} p^{(i)}_{t+\tau}] = \frac{1}{N^2} \left(\sum_{k=0}^{N-1} E[|A_{k}|^2] P_{h}^{(i)}(p_{h}^{(i)} e^{-j2\pi k\tau}) \right)^2
\]

\[
+ \left(\sum_{k=0}^{N-1} E[|A_{k}|^2] \right) \left(\sum_{r=0}^{N-1} E[|A_{r}|^2] \right) - \sum_{k=0}^{N-1} E[|A_{k}|^2] \right)^2
\]

(18)

유사한 과정으로 \(E[(p^{(i)}_{t})^2]\)도 \(i) k = h = m = n, ii) k = h \neq m = n, iii) k = n \neq h = m\)의 경우에만 값 을 갖게 되며 이외에는 0을 갖는다. 이 내용을 이용하여 \(E[(p^{(i)}_{t})^2]\)을 정리하면 다음과 같다.

\[
E[(p^{(i)}_{t})^2] = \frac{1}{N^2} \left(\sum_{k=0}^{N-1} E[|A_{k}|^2] \right)^2 - \sum_{r=0}^{N-1} E[|A_{r}|^2] \right)^2
\]

(19)

그림 2. 임이가 128인 실패터 하마다드의 행과 순한 하마다드의 행을 위성패턴으로 이용했을 때 상관계수 \(\rho_{ij}(\tau)\)의 비교 \((i = 2, j = 4)\).

또한 평균 전력 \(E[p^{(i)}_{t}]\)는 다음과 같이 정리된다.

\[
E[p^{(i)}_{t}] = \frac{1}{N} \sum_{k=0}^{N-1} E[|A_{k}|^2] P_{h}^{(i)}(p_{h}^{(i)} e^{-j2\pi k\tau}) = P_{av}
\]

(20)에서 \(E[|A_{k}|^2]\)는 평균 전력 \(P_{av}\)으로 표현하고 위성 패턴의 원소들이 \(e^{j2\pi k}\)와 같이 단위원상의 원소를 갖는다고 가정하여 \(|P_{h}^{(i)}(p_{h}^{(i)} e^{-j2\pi k\tau}) = 1\)과 같이 표현될 수 있다.

수식 (16)과 (18)-(20)로부터 \(\rho_{ij}(\tau)\)를 구하면 16-QAM 변조방법을 사용하는 경우 (21)와 같이 정리된다.

\[
\rho_{ij}(\tau) = \frac{1}{N} \sum_{k=0}^{N-1} P_{h}^{(i)}(p_{h}^{(i)} e^{-j2\pi k\tau})^2 - \frac{1}{N^2} \frac{1 - \frac{1}{N}}{N^2}
\]

(21)

4. 모의실험 결과

본 장에서는 앞에서 분석한 해석적인 결과들과 이에 대한 모의 실험 결과를 비교하였다. 모의 실험에서 16-QAM 변조를 사용하고 \(N\)개의 부수부파를 사용하는 OFDM심볼을 10\(^{4}\)개 생성하였다. 그림 1은 \(N = 128\)개의 부수부파를 사용하고 \(U = 2\)인 SLM 시스템에서 PAPR의 CCDF를 비교하였다. 다양한 상관계수에 대해 분석적인 결과와 본 논문에서 유도한 결과에 의한 해석적인 결과가 일치하는 것을 그림 1에서 알 수 있다.

\(N = 128\)에 대해서 실패터 (Sylvester) 하마다드 (Hadamard) 행렬의 행과 순한 하마다드 행렬의 행을 수식 (21)을 이용하여 상관 계수를 구한 결과가 그림 2에 도시되었다. 도시된 결과는 실패터 하마다드 행렬의 행과 순한 하마다드 행렬의 2번째와 4번째 행을 선택해서 그린 결과이고 \(i \leq i, j \leq N\)은 다른 행을 선택해서 결과를 도시해도 유사한 경향의 결과를 얻을 수 있다. 실패터 하마다드 행렬의 행과 순한 하마다드 행렬의 행을 PAPR 감소에 이용하는 경우 순한 하마다드 행렬의 행을 이용하는 경우가 더 좋은 감소 성능을 얻을 수 있다. 두 행렬의 행은 모두 직교하는 성질을 갖고 있으나 실패터 하마다드 행렬이 상관 계수가 크
다는 결과로부터 순환 하디마드 행렬의 행을 이용하여 PAPR을 감소하는 경우 실버스터 하디마드 행렬의 행을 이용하여 PAPR 감소시키는 것보다 더 좋은 감소 성능을 얻을 수 있는 것에 대해서 설명할 수 있다.

5. 결론

SLM에서 서로 다른 OFDM 신호의 순서처럼 간의 상관관계가 존재할 수록 PAPR 감소 성능은 열정된다. 본 논문의 연구 결과로부터 SLM에서 서로 다른 OFDM 신호의 상관성이 유도되었고 이것은 두 위상 벡터의 요소 간의 푸리에 변환으로 표현할 수 있었다. CDF를 표현할 때 다변수 chi-square 함수를 이용하여 SLM에서의 PAPR의 CCDF가 유도되었다. 모의 실험 결과와 해석적인 결과는 0.1 dB이내의 차이를 보이는 정확도를 보였다.

6. 감사의 글

본 연구는 저자경제부 및 정보통신연구진흥원의 IT 핵심기술개발사업의 일환으로 수행하였음. [2008-F-007-01, 3차원 환경에서의 지능형 무선 통신 시스템]

7. 참고문헌