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Introduction

Introduction

@ There have been lots of research to find a decimation value d such
that the cross-correlation between a p-ary m-sequence s(t) and its
decimation sequence s(dt) is low.

o The values d with ged(d, p™ — 1) = 1 have been studied by
Trachtenberg, Helleseth, and etc..

@ When the decimation value d is not relatively prime to the period
p™ — 1, several research have been conducted.
= For a ternary case, Ness, Helleseth, and Kholosha derived the
correlation distributions for d = 31 and ged(k,n) = 1, which is
Coulter-Matthews decimation.
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Introduction

= For a tenary case, Muller showed that the magnitude of correlation
values is upper bounded by 2/3" 41 for d = 2L + =1 0.2cm

= Hu, et al. extended Muller's result to any odd prime case, i.e., for
d={p"+1)/(p+ 1)+ (p"™ — 1)/2 and derived the upper bound as

(p+1)/2/p"

= Seo, K;Ir;n |\2|o, and Shin derived the correlation distributions for
— +1) ; ; —
d= (pf, when p is an odd prime and n = 4k.
o We will show that the magnitude of cross-correlation function C;(7)
between s(t) and s(dt + 1) is upper bounded by 24/3™ + 1 for the
new decimation value d = (3™/2 +1)?/8.




Preliminaries

o Trace functions
Let p be an odd prime and Fj~ the finite field with p™ elements.
Then the trace function tr}(-) from Fj» to F, is defined as
n_q

ki k 2 (%
trp(z) = E P =x4aP faP P Pt
i=0

-k

where © € F,» and k|n.

@ m-sequence

Let o be a primitive element of Fn. Then a p-ary m-sequence s(t)
with the period of p™ — 1 can be expressed as

s(t)

trf(a?) (0 <t <p"—2).




Preliminaries

@ Notations

e n = 2m, where m is an odd integer;

m 2
o d= Ez—gllﬁ
e « is a primitive element of Fin;
e w is a third root of unity.

@ Cross-correlation

The cross-correlation function between two p-ary sequences a(t) and b(t)
at shift 7 is defined as

p"—2

C(r)= > wyttm =
t=0

where w,, is the p-th root of unity.




Known Results on Quadratic Forms

o Quadratic form

A quadratic form over [F, is a homogeneous polynomial in
Fylx1,- - ,x,] of degree 2 and can be expressed as

fler, zo, -+ ] = Z ;T T
i,j<n
where a;; € F,.
= The correlation properties of several well known sequence families
are most easily extablished using the theory of quadratic forms.
@ How to decide the number of solutions
The number of solutions x € Fj,» satisfying the quadratic form

f(z) = c for any ¢ € F), can be decided from the rank of the
quadratic form f(x).




Known Results on Quadratic Forms

Lemma

Let
fe Fp[l‘l,"' 7In]

be a quadratic form. Furthermore, let
Yi={ye(F,)": fx+y)— f(x)=0 forall x € (F,)"}.

Then'Y is a subspace of (F},)"™ and rank(f) =n — dim(Y').

Corollary

The rank p of the quadratic form f(x) can be determined by finding the
number of coordinates that the form is independent of, i.e., p"~* is the
number of z € Fyn such that f(y + z) = f(y) forall y € Fpn.




Known Results on Quadratic Forms

Lemma

(The number of solutions to a quadratic form)
Let f be a nondegenerate quadratic form over Fq, q odd, in n of indeterminates. Then
for ¢ € Fq the number of solutions N(c) of the equation f(x1,--- ,x¢) = c in F, is

Case 1) n even;

t—2
N(c) = pt~t —ep T, ifc#0
=2
= pldelp-p 2, ife=0
where ¢ = n((—1)t/2A).
Case 2) n odd;

N(e)= pl4en(cp T, ifc#0
= pt—1, ifc=0

where e = n((—1)¢—1/2A),




Known Results on Quadratic Forms

e Quadratic Character
Define the quadratic character of Fj» as

1, if 2 is a nonzero square in Fpn
n(x) = ¢ —1, if 2 is a nonsquare in Fjn
0, ifz=0.

o Remark

For any b € F, the number of solutions of a quadratic form,
a12} + -+ apzy = b, in F7 is ¢"~F times the number of solutions

of the same equations in FF.




Upper Bound on Cross-Correlation

Quadratic Expression for Cross-Correlation Function

@ The cross-correlation function of s(t) and its decimated sequence
s(dt + 1) at shift 7 is expressed as

3" -2
E ws(t+r)7s(dt+l)
t=0

3n_o

_ Z wtl’;”(at*”'*adt“)
t=0

_ Z wtr?(arszd)

zEFS,

Ci(7)

where a = o™, and b=l with 0 <[ < P’”TH_




Upper Bound on Cross-Correlation

Quadratic Expression for Cross-Correlation Function

@ The cross-correlation function of s(t) and its decimated sequence
s(dt + 1) at shift 7 is expressed as

3" -2
E ws(t+r)7s(dt+l)
t=0

3n_o

_ Z wtl’;”(at*”'*adt“)
t=0

— Z wtr?(arszd)

TEF,

Ci(7)

where a = o™, and b=l with 0 <[ < P’”TH_

= How to express tr} (ax — bx?) into a quadratic form?
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Quadratic Expression for Cross-Correlation Function

@ Let's focus on the function, C(a,b), defined by

n d
Clab)= > M@0 —Oy(r) + 1. (1)
x€Fgn
@ Square and Nonsquare
e Square: a** in Fpn
e Nonsquare: a? 1 in Fpn

@ Since gcd(3™1 4 1,3™ — 1) = 2, we can represent the squares as
am+1 am+1
z =19 ! and nonsquares as z =y *!

, where y € F3n and r is a
nonsquare in F3». Hence (1) is expressed as

, am+1 am+1
I P e
b
yEF3n
tre (”,ys””*l-;-l7brdyd(3””+1+1)
+ w !

yEF3n

(2)
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Quadratic Expression for Cross-Correlation Function

e Since (3™*! +1)d =3" +1 mod 3" — 1, we have

2(a,h) = 3wl
yEFsn
yEF3n

— Z wIW Z W)

yEF3n YyEF3n

where

3'm,+1+1 . b 3m,+1)

9(y) = tri(ay Y
h(y) = tr’f(argf’wrl'*'1 — brdyT L,
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Quadratic Expression for Cross-Correlation Function

@ If y is expressed in terms of a basis {1, a2, -+ ,a,} of F3n over F3 as
Yy =y i, yio;, where y; € F3, then the g(y) and h(y) are given as
quadratic forms. It can be easily shown as

trf (G(Z yia?mﬂ)(z Yicvi) — b(z yz‘Ot?m )(Z ymu))
= trf (a > Z(yiyj)(a;m+1 @) = b3 (i) (af” aj))

9(y)

i=1 j=1 i=1 j=1
= vy )trl (a chmﬂoe- — b
j j j
i=1 j=1
= > wiyyay
i=1 j=1

where a;; = tr} (a(af’mﬂaj) —b(ad" aj)>.
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Find the Rank of the Quadratic Forms

@ In order to derive the values of the exponential sum C(a,b), we have
to find the rank of the quadratic forms g(y) and h(y), i.e., the
number of solutions z € F3» of the equations g(y + z) = g(y) and
h(y + 2z) = h(y) satisfying for all y € F3» as in the following lemma.

Lemma

The number of solutions z € F3n such that g(y + z) = g(y) for all
y € F3n equals the number of solutions z € F3n of

" - (b* + b3m+1)z3 +az=0 (3)

and the number of solutions z € F3n such that h(y + z) = h(y) for all
y € F3n equals the number of solutions z € F3n of

(ar)®™ 2 = (r D) 4+ (r)>" )Pt arz = 0 )

where 1 is a nonsquare in F3..
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Proof of the Lemma

Proof:
The equation g(y + z) = g(y) can be written as

am+1 am am+1 am
tri(a(y +2)° T =bly+2)P ) =ti(ay® T by ). (5)

Then (5) can be rewritten as

gm+1

tr?(y:3m+1 (aSm+1 23 (b3 + p3" )23 +az)+az — bzgmﬂ) =0. (6)

The equation (6) holds for all y € F3» if and only if

m+1 92 qm-+1
a2 B+ )P +az =0 (7)
m—+1 m
trl(az® b2 ) =0 (8)
are satisfied simultaneously. Hence the number of solutions z € F3n

satisfying (5) can be determined by finding the number of solutions
z € F3n satisfying (7) and (8).
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Proof of the Lemma (Cont'd)

Now, we will show that all solutions z € Fj,» satisfying (7) also satisfy
(8). From (7) we have

(b + bswrl)z3 =¥ taz
and raising the 3'~! power gives
@ +3" ) =TT a3 (9)
Using (9), (8) can be rewritten as

tr?lL(aZSm«#l_'_l . b 37n+1)

n

m+1 i m
_ Zad(d +1) Zbd 37413

i=1
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Proof of the Lemma (Cont'd)

_ Z a3@ (ZS'm,+7,+1+31,) . Z b37, (237n,+z+3z)
i=1 i=1
n

n
311 37n+1'+1+3'i 1 31' 37n+11 37n+11+311
= a’ (z - - b +0b z
> )= 5D )

n ) ) ) 1 1 2 ) . . n
_ Z ag! (Z3m+t+1+3z) _ § ( Z a3] (Z3m+a+l+3y) + Z agk (23’77L+k+1+3k‘))
=1 j=1 k=1
= 0

where j =m+1i, k=17— 1.
Hence we only need to calculate the number of solutions for (7) to
determine the number of solutions for (6). O
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Find the Rank of the Quadratic Forms

e From the Lemma, to find the rank of g(y) and h(y), we have to find
out the number of solutions z € F3n of

a3m+1232 _ (b3 + b3m+l)23 +az = 0= Rank Of g(y)
(@)™ 5 (or®)? 4+ (r" )2 + ar2 = 0 = Rank of h(y)

where a = a7, b = !, and r is a nonsquare in FZ,.
3

Lemma

The equation

(ar)3m+129 — (r? ¢ P3N B Larz =0 (10)

has z = 0 as its only solution, where r is a nonsquare in Fy,.
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Proof of the Lemma

Proof:
First, we will show that

pd 4T — (11)
for any nonsquare r in F3n. The equation (11) can be rewritten as
r3d(1 4 3467 =D) —

Thus, we have
pPdET =D = . (12)

Since we have

sa(zm — 1) = 36"+ 1)8(32m =2l

and 3™ +1=4 mod 8, any nonsquare r satisfies (12).




Upper Bound on Cross-Correlation

Proof of the Lemma (Cont'd)

G m—+1 .
From 3¢ 4+ 743" =0, (10) can be rewritten as
m+1 m-+1
a2 = (13)

It is clear that the left hand side of (13) is a nonsquare while the right
hand side of (13) is a square. Thus we have no nonzero solutions for
(13). Therefore the only solution satisfying (10) is z = 0. O
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Linearized Polynomials

o Definition
A polynomial of the form

L(z) = i a;z?
=0

with coefficients field in an extention field F7* of I, is called a
g-polymomial or linearized polynomial.

o If F'is an arbitrary extension field of 7" and L(z) is a linearized
polynomial (i.e., a g-polynomial) over 7", then

L(B+7) = L(8) + L(y), for all B,y € F
L(cp) =cL(B), for all B € F and c € Fy.

Hence the set of solutions in F' is considered as a vector subspace
over Fy, i.e., the number of solution is the equation is a power of g.




The Rank of the Quadratic Form when [ =0

Corollary

When | =0, i.e., the case that cross-correlation between s(t) and s(dt),
the possible rank pairs of g(y) and h(y) are as the followings

(n,n), if g(y + z) = g(y) has one solution
U(g(y), h(y)) =< (n—1,n), if g(y + 2) = g(y) has three solutions
(n—2,n), if g(y+ z) = ¢g(y) has nine solutions

where ¥(f,g) = (ry,7¢) and rg, r4 denote the rank of f and g,
respectively.
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Find the Rank of the Quadratic Forms

Lemma

If 43" — 5 is an element in F3m and n = 2m, where y is an element in
E3n, then y should be an element in Fm.

Proof-
If

y3m -y S FSm'ay S F3"7

then we have
v —y)°

Since (y37n. _ y)37n _ y32m . y3m _ y . y3m' we have

=y’ —y.

v -y =0,

which indicates y is an element of Fsm. 0
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Find the Rank of the Quadratic Forms

Lemma

Suppose that n = 2m = 4k + 2, where k is an iteger. Let
3 1
faly) = (Ay)” + Q'

If A is a nonsquare in Fsm and y is a nonsquare in Fsn then fa(y) is not
an element in Fsm.

Proof:
Suppose that
fA (y) € F3ma

3m
<A3y3 + 1) - (A3y3 + 1) = 0. (14)
Y y

then we have
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Proof of the Lemma (Cont'd)

The lefthand side of (14) can be expressed as

m m 1 1
(AP @) + i APy — =
30,3™\3 L 3,3 1
Y Y
From (15), we can rewrite (14) as
3yl
A3y3 (y3 - 1) = ? y.’jm . (16)

Note that 42”1 — 1 #0, i.e., y is not an element Fym, becuase ¥ is a
nonsquare in Fsn. (If y € F3m, then y = aG" Dk where « is a primitive
element in F3n, 0 < k < 3™ — 2. Thus, y must be a square in F3». This
is a contradiction.) Thus, (16) can be rewritten as

Ay (471 - 1)2 - (17)
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Proof of the Lemma (Cont'd)

From (17), we have

1

 C— (18)

(A:sys*”ﬂ) H _

Note that A% is expressed as a(®"tDk1  where k; is an odd integer,
becuase A is a nonsquare in Fym so is A3. Similarly, 3”1 can be
expressed as a(3" TDk2 \where ks is an odd integer, becuase y is a
nonsquare in F3n. Hence, we have

A3y3m+1 _ a(37n+1)(k1+k2) _ a(3771+1)k/

where k" is an even integer. Thus, the lefthand side of (18) can be
rewritten as

1
(A3y3m+1) 2 _ 4Bk (19)

where k = ’% The equation (19) indicates that the lefthand side of (18)
is an element in Fsm
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Proof of the Lemma (Cont'd)

From the equality of (18), we have

€ Py 20
o — (20)
From (20), we have
y*" —y € Fam. (21)
From Lemma 7, (21) indicates
y S Fgm.

However, this is a contradiction to our assupmtion because y is a
nonsqaure in Fsn. Therfore, we can conclude that

faly) & Fzm.
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Find the Rank of the Quadratic Forms

Theorem

The equation

a0 (b* + b?’MH)Z3 +az=0

has z = 0 as its only solution in F3» when a is a nonsquare in Fzn.

Proof: In order to prove the theorem, we have to show that
A" )2+ a=0 (22)

has no solution in F3,. when a is a nonsquare in F3,.
We can rewrite (22) as

3" 8 ez = BB + p3 (23)
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Proof of the Theorem (cont'd)

The right hand side of (23) is expressed as 77 (b®), which is an element
in F3m. Thus, if we can show that

m+1 _ . .
{z|a,3 P taz? € Fym,z € Fy.,a is a nonsquare in an} = ¢,
(24)
then the proof of the theorem will be completed.
To prove the above statement, we suppose that there is z such that

m+1 _
a® " 2 taz? € Fym

where z € F3, and a is a nonsquare in F3n. Then we have

2

() (2) 4 (%) e e (25
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Proof of the Theorem (cont'd)

If we set a®"*! as A and % as y, then (25) can be rewritten as
3,3, 1
Y

where A is a nonsquare in F3» and y is a nonsquare in Fsn.
However, this is a contradiction to Lemma 8. Therefore, we have
completed the proof. |
e Remark
When [ # 0, the equations to decide the rank of ¢g(y) and h(y) has
the form of the above theorem by turns. Therefore we know that at
least one of the equations has one solution according to the theorem.




The Rank of the Quadratic Form when [ #£ 0

Corollary

The possible rank combination of g(y) and h(y) are as follows:
Case 1) a = o is a square in F3n

(n,n), if g(y + z) = g(y) has one solution

U(g(y),h(y)) =< (n—1,n), if g(y+ z) = g(y) has three solutions
(n—2,mn), if g(y+ 2z) = g(y) has nine solutions.

Case 2) a = o is a nonsquare in F3n

U(g(y),h(y)) = < (n,n—1), if h(y+ z) = h(y) has three solutions

(n,n), if h(y + z) = h(y) has one solution
(n,n—2), if h(y + z) = h(y) has nine solutions.

where U(f,g) = (rf,r¢) and r¢, rqy denote the rank of f and g, respectively.
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Upper Bound on Cross-Correlation Values

@ Define the quadratic character of Fj,» as

1, if z is a nonzero square in Fyn
n(z) = ¢ —1, if z is a nonsquare in Fyn
0, ifz=0.

Lemma

Let n be the quadratic residue character of F3 (i.e., n(0) =0, n(1) =1, and
n(2) = —1). Let f(x) be a nondegenerate quadratic form in t variables with
determinant A. Then

S = Z wl @

TE€F3n
is given by
g - 312 ift is even
~ €3/, ift is odd

where € = n((—1)"/2A) for even t, e = n((—1)*~Y/2A) for odd t.
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Upper Bound on Cross-Correlation Values

Theorem

Letn=2m and d = w where m is an odd integer. Then the
magnitude of Cy(7) in (1) is upper bounded by

|Ci(T)] <2-3% + 1.

Proof: First, we will derive the upper bound on the magnitude of C(a,b).
Using g(y) and h(y), (3) can be rewritten as

2C (a,b) = Z wI® Z W)
yEF3n yEF3n

where o .

m m am+ m
g(y) =tri(ay®" " — by ) and h(y) = trf(ary® T = brdy?T )
have both quadratic forms and r is a nonsquare in Fn.
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Proof of the Theorem (cont'd)

Let €, and ¢, be the values defined in Lemma 11 corresponding to the
quadratic forms of g(y) and h(y), respectively. Note that in the case
when the rank p of a quadratic form is less than n, the corresponding
exponential sum should be multiplied by 3"~*.

It follows from Lemma 4 that the possible rank combinations of the
quadratic forms of ¢g(y) and h(y) are (n,n), (n — 1,n), and (n —2,n) or
vice versa. Hence the following three cases should be considered to
determine the value of C(a,b).

Case 1) The rank pair of g(y) and h(y) is (n,n);
From Lemma 11, we have

2C(a7 b) = ZyEan wg(y) + ZyEan wh(y)
= (eg + 6},,)3%.

Thus, we obtain |C)()| = | — 1+ C(a,b)| < 3% + 1.
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Proof of the Theorem (cont'd)

Case 2) The rank pair of g(y) and h(y) is (n,n — 1), or vice versa;
From Lemma 11, we have
20(0‘7 b) = ZyeFBn wg(lj) + Zyngn wh(ll)
= (V/3ie, +€,)3%.
In this case, we have |C)(7)| = | — 1+ C(a,b)| < 3% + 1.
Case 3) The rank pair of g(y) and h(y) is (n,n — 2), or vice versa.;

From Lemma 11, we have

2C(a7 b) = ZyEF_gn wg(y) + ZyEan wh(y)
= (3¢5 + €r)3%.

We also have |Cy(7)| = | -1+ C(a,b)| <2-3% +1.
Hence the magnitude of C;(7) is upper bounded by 2-33 + 1.
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Conclusion

@ We investigate into the cross-correlation of a ternary m-sequence
m(t) of period 3™ — 1 and its decimated sequence m(dt + 1),

0§l§w, byd:w,wherenz%nzllk—l-z

@ It is shown that the magnitude of the cross-correlation values is
upper bounded by 2/3" + 1.

@ Furtherwork: Construct new sequence family from the sequences.
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