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Abstract— In this paper, we derive the cyclotomic numbers
of order 5 over an extension field Fpn using the well-known
results of quintic Jacobi sums over Fp [1]. For p �≡ 1 mod 5, we
have obtained the simple closed-form expression of the cyclotomic
numbers of order 5 over Fpn . For p ≡ 1 mod 5, we express
the cyclotomic number of order 5 over Fpn in terms of the
solution of the diophantine system which is required to evaluate
the cyclotomic number of order 5 over Fp. Using the cyclotomic
numbers of order 5 over Fpn , autocorrelation distributions of
5-ary Sidel’nikov sequences of period pn − 1 are also derived.

I. INTRODUCTION

Recently, Kim, Chung, No, and Chung [5] have shown the
relation between the autocorrelation distributions of M -ary
Sidel’nikov sequences of period pn−1 [7] and the cyclotomic
numbers of order M over the finite field Fpn with pn elements.
Thus it is interesting to find the cyclotomic numbers of order
5 over Fpn for the derivation of autocorrelation distributions
of 5-ary Sidel’nikov sequences.

For a prime p = Md + 1, numerous studies have discussed
the cyclotomic numbers of order M [1]–[3], [8]. In 1935,
the cyclotomic numbers of order 5 over Fp are derived by
Dickson [3]. He evaluated 25 cyclotomic numbers of order 5
over Fp for a prime p ≡ 1 mod 5, in terms of the solution of
the diophantine system: 16p = x2

0 + 50u2
0 + 50v2

0 + 126w2
0 ,

x0w0 = v2
0 − 4u0v0 − u2

0, and x0 ≡ 1 mod 5.
Noting that the above diophantine system has exactly four

solutions and Dickson did not specify which of these four
solutions was used, Karte and Rajwade [4] in 1985, supple-
mented two more conditions to the diophantine system for the
unique determination of the cyclotomic numbers of order 5 not
only over Fp but Fpn . But their derivation is limited only to
the case of p ≡ 1 mod 5 and still requires the solution of the
diophantine system associated with the extension field Fpn .

In this paper, we derive the cyclotomic numbers of order 5
over an extension field Fpn using the well-known results of
quintic Jacobi sums over Fp [1]. For p �≡ 1 mod 5, we have
obtained the simple closed-form expression of the cyclotomic
numbers of order 5 over Fpn . For p ≡ 1 mod 5, our derivation
becomes similar to Karte and Rajwade’s, but only requires the
solution of the diophantine system associated with the prime
field Fp not Fpn . Using the cyclotomic numbers of order 5
over Fpn , autocorrelation distributions of 5-ary Sidel’nikov
sequences of period pn − 1 are also derived.
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II. PRELIMINARIES
n − 1) and α be a primitive element of Fpn . Then the

mic numbers of order 5 are defined as follows.
ition 1: The cyclotomic class Ci of order 5, 0 ≤ i ≤

pn is defined as

Ci =
{
α5l+i

∣∣ 0 ≤ l <
pn − 1

5
}
.

d positive integers i and j, 0 ≤ i, j ≤ 4, not necessarily
, the cyclotomic number (i, j)5 is defined as the number
ents z ∈ Ci such that 1 + z ∈ Cj . �
ollowing lemma [8] shows the elementary relationships
the cyclotomic numbers of order 5.
a 2: [8]

r any integers l1 and l2, (i + 5l1, j + 5l2)5 = (i, j)5
j)5 = (5 − i, j − i)5
j)5 = (j, i)5
4
j=0(i, j)5 = pn−1

5 − θi, for θi =
{

1, if i = 0
0, otherwise

4
i=0(i, j)5 = pn−1

5 − ηj , for ηj =
{

1, if j = 0
0, otherwise.

�
be a finite abelian group of order |G|. A character

is a homomorphism from G into the multiplicative
of complex numbers of absolute value 1. Then we

ne the characters, Gauss sum, and Jacobi sum as in
owing definitions.
ition 3: A multiplicative character of order M of Fpn

ed as

M (αt) = ej 2πt
M , if αt ∈ F ∗

pn , and ψM (0) = 0

=
√−1 , α is a primitive element of Fpn , M |(pn−1),

t ≤ pn − 2. �
r : Fpn → Fp be the trace function from Fpn to Fp.

e function χ(c) = e
j2πtr(c)

p is the canonical additive
er of Fpn . Let ψ be a multiplicative character and χ
tive character of Fpn . Then the Gauss sum G(ψ, χ) is
by

G(ψ, χ) =
∑

c∈F∗
pn

ψ(c)χ(c).

ition 4: [6] Let λ1, · · · , λk be k multiplicative char-
f Fpn . Then the sum

J(λ1, · · · , λk) =
∑

c1+···+ck=1

λ1(c1) · · ·λk(ck)



with the summation extended over all k-tuples (c1, · · · , ck) of
elements of Fpn satisfying c1 + · · ·+ck = 1, is called a Jacobi
sum in Fpn . �
For the nontrivial multiplicative character ψ of Fpn , we have
|J(ψ, ψ)|2 = pn.

Throughout the paper, we will denote the multiplicative
character of order 5 by ψ and the Jacobi sum J(ψi, ψj) by
J(i, j).

III. THE CYCLOTOMIC NUMBERS OF ORDER 5 OVER Fpn

From 2) and 3) of Lemma 2, we can name the following 7
cyclotomic numbers of order 5 over Fpn from A to G.

A = (0, 0)5
B = (1, 1)5 = (4, 0)5 = (0, 4)5
C = (2, 2)5 = (3, 0)5 = (0, 3)5
D = (3, 3)5 = (2, 0)5 = (0, 2)5
E = (4, 4)5 = (1, 0)5 = (0, 1)5
F = (2, 1)5 = (3, 4)5 = (1, 4)5 = (4, 1)5 = (4, 3)5 = (1, 2)5
G = (3, 2)5 = (2, 4)5 = (1, 3)5 = (3, 1)5 = (2, 3)5 = (4, 2)5.

Then, from 4) of Lemma 2, we have

A + B + C + D + E =
pn − 1

5
− 1

B + E + 2F + G =
pn − 1

5
, C + D + F + 2G =

pn − 1
5

.

There are 7 unknowns, but we have only 3 equations. What
we are going to do is reducing the number of unknowns to
3 by directly evaluating A, B,C, and F using quintic Jacobi
sums.

Since −1 ∈ C0, the cyclotomic number, (i, j)5, 0 ≤ i, j ≤
4, corresponds to the number of the ordered pair (l1, l2)
satisfying α5l1+i + α5l2+j = 1 for integers 0 ≤ l1, l2 <
(pn − 1)/5. The next theorem tells us that the number of
solutions (x, z) of αix5 + αjz5 = 1, x, z ∈ Fpn can be
expressed in terms of the Jacobi sums [6].

Theorem 5: [Lidl and Niederreiter [6]] The number Ni,j of
solutions (x, z) of a diagonal equation αix5 + αjz5 = 1 in
F 2

pn is given by

Ni,j = pn +
4∑

k1=1

4∑
k2=1

ψk1(α−i)ψk2(α−j)J(k1, k2).

�
Using the well-known properties of Jacobi sums, we can

obtain the following relationships among the quintic Jacobi
sums.

Lemma 6: The quintic Jacobi sums have the following
equalities:

J(1, 1) = J(1, 3) = J(3, 1), J(2, 2) = J(1, 2) = J(2, 1)
J(3, 3) = J(3, 4) = J(4, 3), J(4, 4) = J(4, 2) = J(2, 4)
J(1, 4) = J(2, 3) = J(3, 2) = J(4, 1) = −1.

�
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g Theorem 5 and Lemma 6, we will evaluate A,B, C,
in terms of Jacobi sums J(1, 1) and J(2, 2) in the

ng series of four lemmas. Let J(1, 1) = a + jb,
= c + jd, j =

√−1, and a, b, c, and d be in the real
field R. And let ω be a complex 5-th root of unity.
a 7: The cyclotomic number A = (0, 0)5 over Fpn is

s

25A = pn + 6(a + c) − 14.

f: A = (0, 0)5 is the number of solutions x5(�= 0, 1)
z5 = 1, for a given z5 ∈ Fpn\{0, 1}. It is clear that
solution x5 ( �= 0, 1) in the computation of (0, 0)5

onds to 25 solutions (xβi, zβj), 0 ≤ i, j ≤ 4, in N0,0,
β = α

pn−1
5 . Also in the computation of (0, 0)5, we

exclude the ten solutions (x, z) in N0,0, namely, (0, 1),
(0, β2), (0, β3), (0, β4), (1, 0), (β, 0), (β2, 0), (β3, 0),
since they correspond to either x5 = 0 or x5 = 1.
we have

(0, 0)5 =
N0,0 − 10

25
.

emma 6, we have

= pn + 3[J(1, 1) + J(2, 2) + J(3, 3) + J(4, 4)] − 4.

·, ·) denote the complex conjugate of J(·, ·). Since
= J(4, 4) and J(2, 2) = J(3, 3), we have done. �
a 8: The cyclotomic number B = (4, 0)5 over Fpn

as

2pn − 3(a + c) +
√

5(a − c) −
√

5 + 2
√

5(b + 3d)

−
√

5 − 2
√

5(3b − d) − 4.

f: B = (4, 0)5 is the number of solutions x5 of
+ z5 = 1, for a given z5 ∈ Fpn\{0, 1}. If x = 0,
e z5 = 1. Similarly to the previous case, we remove 5
s for N4,0 and thus we have

(4, 0)5 =
N4,0 − 5

25
.

emma 6, we have

= pn + (2ω + ω3)J(1, 1) + (ω + 2ω2)J(2, 2)

+ (2ω3 + ω4)J(3, 3) + (ω2 + 2ω4)J(4, 4) + 1.

ω + ω3 = 2ω4 + ω2 and ω + 2ω2 = ω4 + 2ω3, we
ne. �
a 9: The cyclotomic number C = (3, 0)5 over Fpn

as

2pn − 3(a + c) −
√

5(a − c) −
√

5 + 2
√

5(3b − d)

+
√

5 − 2
√

5(b + 3d) − 4.

f: C = (3, 0)5 is the number of solutions x5 of α−2x5+
, for a given z5 ∈ Fpn\{0, 1}. If x = 0, we have



z5 = 1. Similarly to the previous case, we remove 5 solutions
for N3,0 and thus we have

(3, 0)5 =
N3,0 − 5

25
.

From Lemma 6, we have

N3,0 = pn + (2ω2 + ω)J(1, 1) + (ω2 + 2ω4)J(2, 2)

+ (2ω + ω3)J(3, 3) + (ω4 + 2ω3)J(4, 4) + 1.

Since 2ω2 + ω = 2ω3 + ω4 and ω2 + 2ω4 = ω3 + 2ω, we
have done. �

Lemma 10: The cyclotomic number F = (3, 4)5 over Fpn

is given as

25F = pn + (a + c) −
√

5(a − c) + 1.

Proof: F = (3, 4)5 is the number of solutions x5 of α−2x5+
α−1z5 = 1, for a given z5 ∈ F ∗

pn . Since α is a primitive
element of Fpn , x = 0 cannot be a solution of the above
equation. Thus we have

(3, 4)5 =
N3,4

25
.

From Lemma 6, we have

N3,4 = pn + (ω3 + ω2 + 1)(J(1, 1) + J(4, 4))

+(ω4 + ω + 1)(J(2, 2) + J(3, 3)) − (ω4 + ω3 + ω2 + ω)

= pn − 4Re[ω]Re[J(1, 1)] − 4Re[ω2]Re[J(2, 2)] + 1.

Since Re[ω] = cos( 2π
5 ) = (−1 +

√
5)/4 and Re[ω2] =

cos( 4π
5 ) = (−1 −√

5)/4, we have done. �
Using the previous lemmas, we can calculate the 7 param-

eters A,B, · · · , G as follows.
Theorem 11: Let x = 2(a + c), 25w = 2

√
5(a − c),

50v = −2
√

5 + 2
√

5(b + 3d) − 2
√

5 − 2
√

5(3b − d), and
50u = −2

√
5 + 2

√
5(3b − d) + 2

√
5 − 2

√
5(b + 3d). Then

the cyclotomic numbers of order 5 over Fpn are given as

25A = pn + 3x − 14 (1)

100B = 4pn − 3x + 25w + 50v − 16 (2)

100C = 4pn − 3x − 25w + 50u − 16 (3)

100D = 4pn − 3x − 25w − 50u − 16 (4)

100E = 4pn − 3x + 25w − 50v − 16 (5)

50F = 2pn + x − 25w + 2 (6)

50G = 2pn + x + 25w + 2 (7)

where the integers x, u, v, and w satisfy that x2 + 125w2 +
50u2 +50v2 = 16pn, v2−4uv−u2 = xw, and x ≡ 1 mod 5.

Proof: From Lemmas 7–10, it is not difficult to derive D,
E, and G. By substituting x = 2(a + c), 25w = 2

√
5(a − c),

50v = −2
√

5 + 2
√

5(b + 3d) − 2
√

5 − 2
√

5(3b − d), and
50u = −2

√
5 + 2

√
5(3b− d) + 2

√
5 − 2

√
5(b + 3d), we can

derive (1)–(7).
From (1), it is clear that x is an integer. And from (6) and

(7), we have G−F = w. Thus w is an integer. From (3) and

(4), we
(2) and
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Fpn are
have C − D = u. Thus u is an integer. Finally from
(5), we have B − E = v. Thus v is an integer.

, we will show that x2 +125w2 +50u2 +50v2 = 16pn

− 4uv − u2 = xw. Using

= 4(a + c)2, 125w2 = 4(a − c)2

=
4
50

[
(5 + 2

√
5)(b + 3d)2 + (5 − 2

√
5)(3b − d)2

+ 2
√

5(b + 3d)(3b − d)
]

(8)

=
4
50

[
(5 + 2

√
5)(3b − d)2 + (5 − 2

√
5)(b + 3d)2

− 2
√

5(b + 3d)(3b − d)
]
, (9)

e x2 +125w2 = 8(a2 + c2) and 50u2 +50v2 = 8(b2 +
nce a2 + b2 = pn and c2 + d2 = pn, we have x2 +
+ 50u2 + 50v2 = 16pn.
) and (9), we have

v2 − u2 =
4
√

5
125

(−b2 + 4bd + d2) (10)

4uv =
4
√

5
125

(4b2 + 4bd − 4d2). (11)

0) and (11), we have

4uv − u2 =
4
√

5
25

(d2 − b2) =
4
√

5
25

(a2 − c2) = xw.

1), pn + 3x − 4 ≡ 0 mod 5. Since pn ≡ 1 mod 5, we
≡ 1 mod 5.

�
we have to find the Jacobi sums J(1, 1) and J(2, 2).

e Case for p �≡ 1 mod 5

�≡ 1 mod 5, we can obtain the Jacobi sums over Fpn

tickelberger’s Theorem.
rem 12: (Stickelberger’s Theorem) [6] Let q be a
ower, ψ a nontrivial multiplicative character on Fq2 of

dividing q+1, and χ the canonical additive character
Then,

ψ, χ) =
{

q, if M odd or q+1
M even

−q, if M even and q+1
M odd.

�
valuating Jacobi sum J(1, 1) on Fpn , we will use the
dea given in the following theorem.
rem 13: [6] Let λ′

1, · · · , λ′
k be multiplicative charac-

q , not all of which are trivial. Suppose that λ′
1, · · · , λ′

k

d to characters λ1, · · · , λk, respectively, of the finite
n field E of Fq with [E : Fq] = m. Then

, · · · , λk) = (−1)(m−1)(k−1)J(λ′
1, · · · , λ′

k)m.

�
a 14: For p �≡ 1 mod 5, the quintic Jacobi sums over
given as

J(1, 1) = J(2, 2) = (−1)m−1pn/2



where

m =
{

n
4 , if p ≡ 2 or 3 mod 5
n
2 , if p ≡ 4 mod 5.

Proof: For p ≡ 2 mod 5 and pn ≡ 1 mod 5, n must be
a multiple of 4. Let n = 4m and q = p2. Let ψ′ be a
multiplicative character on Fq . By Stickelberger’s Theorem,
G(ψ′, χ) = G(ψ′2, χ) = p2. Thus the Jacobi sum J(ψ′, ψ′)
on Fq is evaluated as

J(ψ′, ψ′) =
(G(ψ′, χ))2

G(ψ′2, χ)
=

p4

p2
= p2.

By lifting, we have J(1, 1) = (−1)m−1p2m = (−1)m−1pn/2.
The case for p ≡ 3 mod 5 is similar to the case for p ≡
2 mod 5.

For the case when p ≡ 4 mod 5, n must have the divisor
2. Let n = 2m and q = p. By Stickelberger’s Theorem,
G(ψ′, χ) = G(ψ′2, χ) = p. By lifting, we also have J(1, 1) =
(−1)m−1pm = (−1)m−1pn/2.

Since ψ2 is also a multiplicative character of order 5, we
can obtain the same result for J(2, 2).

�
Using Theorem 11 and Lemma 14, the cyclotomic numbers

of order 5 over Fpn for p �≡ 1 mod 5 can be computed as
follows:

Theorem 15: For p �≡ 1 mod 5, we have

25A = pn − 12(−1)mpn/2 − 14

25B = 25C = 25D = 25E = pn + 3(−1)mpn/2 − 4

25F = 25G = pn − 2(−1)mpn/2 + 1

where

m =
{

n
4 , if p ≡ 2 or 3 mod 5
n
2 , if p ≡ 4 mod 5.

Proof: From Lemma 14, we have x = 4(−1)m−1pn/2 and
w = v = u = 0. From Theorem 11, we can obtain the above
relations. �

B. The Case for p ≡ 1 mod 5

Using the well known result of Jacobi sums over Fp [1],
we will evaluate J(1, 1) and J(2, 2) over Fpn .

Theorem 16: [1] For p ≡ 1 mod 5, the quintic Jacobi sums
over Fp are given as

4J(1, 1) = x0 + 5w0

√
5 + ju0

√
50 + 10

√
5

+ jv0

√
50 − 10

√
5

4J(2, 2) = x0 − 5w0

√
5 + jv0

√
50 + 10

√
5

− ju0

√
50 − 10

√
5

where j =
√−1 and the integers x0, w0, v0, and u0 are the

solutions of

16p = x2
0 + 125w2

0 + 50v2
0 + 50u2

0

x0w0 = v2
0 − u2

0 − 4u0v0, and x0 ≡ 1 (mod 5). (12)

Note
then
(x0,−w
x0, w0,
p < 100

THE IN

Usin
Jacobi

D1(k,

D2(k,

B(k,

Lemm

Then w

a =
(−

b =
(−

×
where �

Lemm

Then w

c =
(−

d =
(−

×

�
that if (x0, w0, v0, u0) is a solution of (12),
(x0, w0,−v0,−u0), (x0,−w0,−u0, v0), and

0, u0, v0) are also solutions of (12). The integers,
v0, and u0 satisfying (12) are listed in Table I for

and p ≡ 1 mod 5.

TABLE I

TEGERS x0, w0, v0, AND u0 SATISFYING THE CONDITIONS (12)

FOR p < 100 AND p ≡ 1 mod 5 [1].

p x0 w0 v0 u0

11 1 1 1 0
31 11 −1 1 2
41 −9 −1 3 0
61 1 1 −1 4
71 −19 1 −3 −2

g the lifting idea in Theorem 13, we can obtain the
sums over the extension field Fpn . Let

r, s) =
(

n

2k

)(
k

s

)(
n − 2k

r

)

r, s) =
(

n

2k + 1

)(
k

s

)(
n − 2k

r

)

r, s) = xn−2k−r+s
0 wr+s

0 (u2
0 + v2

0)k−s(−10)k5k−s+r.

a 17: Let

H1 =
(u0

√
50 + 10

√
5 + v0

√
50 − 10

√
5)

x0 + 5w0

√
5

.

e have

1)n−1

4n

�n
2 �∑

k=0

k∑
s=0

n−2k∑
r=0

D1(k, r, s)B(k, r, s)
√

5
s+r

(−1)s

1)n−1

4n
H1

�n−1
2 �∑

k=0

k∑
s=0

n−2k∑
r=0

D2(k, r, s)B(k, r, s)

√
5

s+r
(−1)s

x� denotes the greatest integer less than or equal to x.
�

a 18: Let

H2 =
(v0

√
50 + 10

√
5 − u0

√
50 − 10

√
5)

x0 − 5w0

√
5

.

e have

1)n−1

4n

�n
2 �∑

k=0

k∑
s=0

n−2k∑
r=0

D1(k, r, s)B(k, r, s)
√

5
s+r

(−1)r

1)n−1

4n
H2

�n−1
2 �∑

k=0

k∑
s=0

n−2k∑
r=0

D2(k, r, s)B(k, r, s)

√
5

s+r
(−1)r.

�



IV. AUTOCORRELATION DISTRIBUTIONS OF 5-ARY

SIDEL’NIKOV SEQUENCES

The M -ary Sidel’nikov sequence s(t) of period N = pn−1
[7] is defined as

s(t) =
{

k, if αt ∈ {c − 1 | c ∈ Ck}, 0 ≤ k ≤ M − 1
k0, if t = pn−1

2

where k0 is some integer modulo M . The autocorrelation
function of Sidel’nikov sequences is defined as

R(τ) =
N−1∑
t=0

ω
s(t)−s(t+τ)
M

and in [5], it is shown that R(τ) is written as the following
form

Ru,v = −(
ωu+k0

M − 1
)(

ωv−k0
M − 1

)

where ωM is a complex M -th root of unity.
Also in [5], the autocorrelation distributions of M -ary

Sidel’nikov sequences are expressed in terms of the cyclotomic
numbers over Fpn of order M . Using the cyclotomic numbers
of order 5 in Section III, we can obtain the autocorrelation
distribution of 5-ary Sidel’nikov sequences as in the following
theorem.

Theorem 19: Let N(Ru,v) be the number of Ru,v in R(τ)
for 0 ≤ τ ≤ N − 1. Then the out-of-phase autocorrelation
distribution of a 5-ary Sidel’nikov sequence of period pn − 1
is given as:

N(0) = A + 2B + 2C + 2D + 2E = (9pn − 3x − 46)/25
N(R1,1) = N(R4,4) = F, N(R3,3) = N(R2,2) = G

N(R1,3) = N(R2,4) = 2F = (2pn + x − 25w + 2)/25
N(R3,4) = N(R1,2) = 2G = (2pn + x + 25w + 2)/25
N(R1,4) = B + E = (4pn − 3x + 25w − 16)/50
N(R2,3) = C + D = (4pn − 3x − 25w − 16)/50.

�
Note that if w = 0, we have B + E = C + D and F = G.

Although the partition itself of F ∗
pn into cyclotomic classes

is invariant if we use the primitive element β(= αs) instead
of α, the name of each class, and accordingly the cyclotomic
numbers can be switched. Let (i, j)M,α denote the cyclotomic
number (i, j)M obtained by using α as the primitive element.
Then, for another primitive element β(= αs), we have

(i, j)M,α = (is, js)M,β .

Since the autocorrelation distribution of a 5-ary Sidelnikov
sequence is expressed in terms of the cyclotomic number
of order 5, the distribution can be altered if we change the
primitive element.

Theorem 20: For w �= 0, there are two different types of
the autocorrelation distributions for the given period of 5-ary
Sidel’nikov sequences.
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f: Let β = α−s. If s ≡ 4 mod 5, then we have

Aα = Aβ , Fα = Fβ , Gα = Gβ

Bα = (1, 1)5,α = (4, 4)5,β = Eβ , vice versa

Cα = (2, 2)5,α = (3, 3)5,β = Dβ , vice versa

he subscripts α and β denote the primitive elements of
d for the construction of the cyclotomic classes of or-
hen the autocorrelation distribution of the Sidel’nikov
e remains the same when we change the primitive

t α with β. Similarly, if s ≡ 2 mod 5, we have

Aα = Aβ

Bα = (1, 1)5,α = (2, 2)5,β = Cβ

Cα = (2, 2)5,α = (4, 4)5,β = Eβ

Eα = (4, 4)5,α = (3, 3)5,β = Dβ

Dα = (3, 3)5,α = (1, 1)5,β = Bβ

Fα = (2, 1)5,α = (4, 2)5,β = Gβ , vice versa

en the autocorrelation distribution of the 5-ary
ikov sequence is altered when we change the primitive
t α with β. The autocorrelation distribution for s ≡
5 is the same as that for s ≡ 2 mod 5. If w = 0, we
+ E = C + D and F = G, which means that there
nly a single autocorrelation distribution for the given
of 5-ary Sidel’nikov sequences. �
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