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Abstract—In this paper, we propose the best relay selection
scheme for the soft-decision-and-forward cooperative network
with multiple relays. The term ‘best relay selection’ implies
that the relay having the largest end-to-end signal-to-noise ratio
is selected to transmit in the second phase transmission. The
approximate performances are analyzed in terms of pairwise
error probability. Using the Fox’s H-function, it is shown that
the proposed scheme has full diversity order.

Index Terms—Cooperative diversity, Fox’s H-function, max-
imum distribution, relay selection, soft-decision-and-forward
(SDF).

I. INTRODUCTION

Higher spectral efficiency and high data rate might be

achieved by multiple-antenna technique [1] which increases

the channel capacity. However, due to the limitation on

implementation, the virtual multiple-antenna technique in a

distributed sense is recommended. In [2], Ikki and Ahmed

proposed and analyzed the best relay selection scheme based

on amplify-and-forward protocol equipped with one antenna

in each node. But their performance analysis left a room for

an improvement since it was based on a rough approximation.

Bletsas et al. [3] described the forward channel estimation for

the opportunistic relay selection in case of the multiple relays.

Yang, Song, No, and Shin [4] proposed the new cooperation

protocol called soft-decision-and-forward (SDF) using Alam-

outi code [5]. And in [7], Song, No, and Chung analyzed

the bit error rate (BER) and suboptimal power allocation of

the single-relay SDF cooperative network. In this paper, a

best relay selection scheme using Alamouti code for the SDF

cooperative network with multiple relays is proposed. For the

proposed scheme, we express the end-to-end signal-to-noise

ratios (SNRs) and derive the PEP under the ML decoder.

From the derived PEP for the SDF cooperative networks

with multiple relays, its diversity order is obtained using the

property of H-function distribution [9]. It is shown that the

proposed best relay selection has full diversity order.

This paper is organized as follows. Section II describes the

system model for the proposed ‘best relay selection’ schemes.

In Section III, the PEP and the diversity order for the best relay

selection scheme are derived. Finally, the concluding remarks

are given in Section IV.

Notations: E [·] denotes the expectation of a random vari-

able. X ∼ CN (0, σ2) means that X is a complex normal

random variable with zero mean and variance σ2/2 in both

real and imaginary parts, respectively. (·)T, (·)†, and ‖ · ‖
denote the transpose of a matrix, the conjugate transpose of

a matrix, and the Frobenius norm of a matrix or a vector,

respectively. Bold-face uppercase and lowercase letters denote

matrices and vectors, respectively.

II. SYSTEM MODEL

In this section, the system model of SDF protocol [4] with

multiple relays equipped with two antennas in each node as

shown in Fig. 1 is described. This cooperative communication

system is composed of one source (S), one destination (D),

and M relays (Rm, m = 1, · · ·,M ). In the second phase

transmission, the best relay selection scheme is considered.

The following notations are used in this section. The Alam-

outi code

[
a b
−b∗ a∗

]
is denoted by A(a, b). Also, for any

2 × 2 matrix B =

[
b11 b12
b21 b22

]
, the 4 × 2 matrix B′ and the

vector cv(B) are defined as B′ =
[
b11 b∗21 b12 b∗22
b21 −b∗11 b22 −b∗12

]T
and cv (B) =

[
b11 b∗21 b12 b∗22

]T
.

The total transmit power P in the network is defined as

the sum of the transmit power P1 at S and the total transmit

power P2 at the relays. The channel gains of each link S → D,

S → Rm, and Rm → D are assumed to be Rayleigh-

faded, i.e., f ij
0 ∼ CN (0, σ2

SD), f ij
m ∼ CN (0, σ2

SRm
), and

gijm ∼ CN (0, σ2
RmD), where f ij

0 , f ij
m , and gijm, i, j = 1, 2,

m = 1, · · ·,M , denote the path gain from the ith transmit

antenna at S to the jth receive antenna at D, from the ith
transmit antenna at S to the jth receive antenna at Rm, and

from the ith transmit antenna at Rm to the jth receive antenna

at D, respectively. These path gains are represented as the

channel matrices F0 = [f ij
0 ], Fm = [f ij

m ], and Gm = [gijm].
The signal transmission in the cooperative networks is

composed of two phases. In the first phase, S transmits the
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Fig. 1. Cooperative communication network composed of one source (S),
M relays (Rm), and one destination (D) with two antennas in each node. In
the second phase, one of M relays is only participated in the transmission.

signals using Alamouti code to Rm, m = 1, · · ·,M and D.

The received signals at Rm and D are represented, respectively,

as

YRm
=

√
P1

2
XFm +NRm

, m = 1, · · ·,M

YD1 =

√
P1

2
XF0 +ND1 (1)

where X = A(x1, x2) is the transmit codeword for the

message vector x = [x1 x2]
T

at S in the first phase, F0 and

Fm denote the channel matrices of S → D and S → Rm,

respectively, and NRm
and ND1 are the 2× 2 additive white

Gaussian noise (AWGN) matrices with zero-mean and unit-

variance entries. The equation (1) can be also rewritten as the

vector-form

cv(YRm
) =

[
y
(Rm)
11 y

(Rm)∗
21 y

(Rm)
12 y

(Rm)∗
22

]T
=

√
P1

2
F′

mx+ cv(NRm
)

cv(YD1) =
[
y
(D1)
11 y

(D1)∗
21 y

(D1)
12 y

(D1)∗
22

]T
=

√
P1

2
F′

0x+ cv(ND1).

In contrast to the conventional multiple-relay transmis-

sion [8], the signal in the second phase of the best relay

selection scheme is transmitted from only one relay Rm̂

according to the selection criterion

m̂ = argmax
m

{
γm,1γm,2

γm,1 + γm,2 + 1

}
(2)

where γm,1 = P1‖Fm‖2/2 and γm,2 = P2‖Gm‖2/2. This

selection criterion stems from the maximization of the ergodic

capacity given by

C =
1

2
log2

(
1 + γ0 +max

m

γm,1γm,2

γm,1 + γm,2 + 1

)
. (3)

Then, the selected m̂th relay Rm̂ transmits the following

codeword to D

XRm̂
= A(x̃m̂,1, x̃m̂,2) =

[
x̃m̂,1 x̃m̂,2

−x̃∗
m̂,2 x̃∗

m̂,1

]
.

In the second phase, the destination D receives the signal

from the m̂th relay as

YD2 =

√
P2

2
XRm̂

Gm̂ +ND2

where Gm̂ is the channel matrix of Rm̂ → D and ND2 denotes

the 2 × 2 AWGN matrix with zero-mean and unit-variance

entries. Converting the matrix equation into the vector form

gives us the following alternative expression

cv(YD2) =

√
P1P2

2
λm̂‖Fm̂‖2G′

m̂x

+

√
P2

2
λm̂G′

m̂F′
m̂

†
cv(NRm̂

) + cv(ND2)

where

λm̂ =

√
2

‖Fm̂‖2(P1‖Fm̂‖2 + 2)
.

The received signal at D in both phases can be rewritten as

an equivalent vector model[
cv(YD1)
cv(YD2)

]
︸ ︷︷ ︸

y

=

√
P1

2

⎡
⎣ F′

0√
P2

2
λm̂‖Fm̂‖2G′

m̂

⎤
⎦

︸ ︷︷ ︸
H

x+

[
cv(ND1)
cv(ND)

]
︸ ︷︷ ︸

n

(4)

where cv(ND) means the equivalent noise at D in the vector

form given by

cv(ND) =

√
P2

2
λm̂G′

m̂F′
m̂

†
cv(NRm̂

) + cv(ND2).

The ML decoder for the best relay selection can be found

in [4] since it is the same as the one for a single relay case.

III. PEP AND DIVERSITY ORDER

The proposed scheme uses only one relay in the second

phase, i.e., the relay Rm̂ selected according to the selection

criterion in (2) transmits the signals with power P2 in the

second phase. Assume that the uniform power allocation is

used between S and Rm̂, i.e., P1 = P2 = P/2. Let γ0, γm̂,1,

and γm̂,2 be the SNRs of S → D, S → Rm̂, and Rm̂ → D
links defined by

γ0 = P‖F0‖2/4, γm̂,1 = P‖Fm̂‖2/4, γm̂,2 = P‖Gm̂‖2/4.
Then, the instantaneous end-to-end SNR for best relay selec-

tion can be expressed as

γeq = γ0 +max
m

γm,1γm,2

γm,1 + γm,2 + 1

= γ0 +
γm̂,1γm̂,2

γm̂,1 + γm̂,2 + 1
(5)
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where γ0 ∼ G (4, σ2
SDP/4

)
, γm̂,1 ∼ G

(
4, σ2

SRm̂
P/4

)
, and

γm̂,2 ∼ G
(
4, σ2

Rm̂DP/4
)
, respectively.

For two positive numbers x and y, if we consider the

constant k > (x + y + 1)/(x + y), the following inequality

holds:
xy

k(x+ y)
<

xy

x+ y + 1
<

xy

x+ y
.

Thus, (5) can be rewritten as

γ0 +
μH(γm̂,1, γm̂,2)

2k
< γeq < γ0 +

μH(γm̂,1, γm̂,2)

2
(6)

where μH(a, b) � 2ab

a+ b
and k > 1 + (γm̂,1 + γm̂,2)

−1.

The conditional PEP under ML decoder can be written as

Pr(x→ x̂|H) ≤ Q

(√
δ2x
2

(
γ0 +

μH(γm̂,1, γm̂,2)

2k

))

Pr(x→ x̂|H) ≥ Q

(√
δ2x
2

(
γ0 +

μH(γm̂,1, γm̂,2)

2

))

where δx = ‖x̂− x‖ and k > 1 + (γm̂,1 + γm̂,2)
−1.

The average PEP for the SDF protocol can by obtained by

averaging the conditional PEP in the above equation over H.

Furthermore, Q-function is upperly and lowerly bounded by

N∑
n=1

an exp
(−bn−1x

2
) ≤ Q(x) ≤

N∑
n=1

an exp
(−bnx2

)
(7)

where an = (θn − θn−1)/π and bn = 1/(2 sin2 θn) for n =
1, · · ·, N with θ0 = 0. And then, the PEP can be lowerly and

upperly bounded

Pr(x→ x̂) ≤
N∑

n=1

anMγ0

(
bn
2
δ2x

)
Mγmax

(
bn
4k

δ2x

)

Pr(x→ x̂) ≥
N∑

n=1

anMγ0

(
bn−1

2
δ2x

)
Mγmax

(
bn−1

4
δ2x

)
where MX(s) is the MGF of random variable X , i.e., the

Laplace transform of X , and γmax � μH(γm̂,1, γm̂,2).
Since the lower bound can have the same form as the upper

bound except the index of bn, it is enough to show the diversity

order for the upper or lower bound of the PEP.

However, it is difficult to derive the maximum distribution

of the harmonic mean bewteen two gamma random variables.

For derivation of the diversity order, we will use the following

relation:

Pr (γmax ≤ γ) = Pr (γ1 ≤ γ, · · ·, γM ≤ γ)

= Pr
(
lim
r→∞ [γr

1 + · · ·+ γr
M ≤ γr]

)
.

Since γm’s are independent, the MGF of γmax equals to the

M th power of the MGF of γr
m, i.e.,

Mγmax(s) =M∑M
m=1 γr

m
(s) =

[Mγr
m
(s)
]M

as r →∞. As γm has H-function distribution [9], so does γr
m.

Since the MGF of γm is expressed in terms of H-function, the

MGF of γr
m can be written as H-function as in the following

theorem.

Theorem 1: The asymptotic MGF of γmax is represented as

Mγmax
(s) ≈

{(
Ω

2

)−4
[
3 +

95

27

(
Ω

2

)−4

log

(
Ω

2

)]}M

.

Proof: Let Zm = Y r
m where Ym = μH(γm,1, γm,2)

for γm,1, γm,2 ∼ G(K,Ω). By the property of H-function

distribution [9], the PDF of Zm can be expressed by using

H-function given as

fZm
(z) =

√
π

22K−2Γ2(K)Ω

(
2

Ω

)r−1

×H
2,0
1,2

[(
2

Ω

)r

z
∣∣∣ (K − r + 1

2 , r)

(K − r, r), (2K − r, r)

]
where Ω = σ2P/4 and Hm,n

p,q

[·∣∣·] is the Fox’s H-function

defined in [10]. Taking the Laplace transform into the above

PDF, the MGF of Zm can be expressed as

MZm
(s) =

√
π

22K−1Γ2(K)
H

1,2
2,2

[
cs

∣∣∣∣∣ (1−K, r), (1− 2K, r)

(0, 1), ( 12 −K, r)

]
(8)

where c = (Ω2 )
r. In this case, K = 4 is considered.

Using the result in [8], the following relation holds for for

s at infinity :

H
1,2
2,2

[
cs

∣∣∣∣∣ (−3, r), (−7, r)(0, 1), (− 7
2 , r)

]

≈
∑
i

′
hi(cs)

ai−1

αi +
∑
i

′′
Hi,k(cs)

ai−1

αi (log cs)

=h1(cs)
− 4

r +
{
H1,4(cs)

− 4
r +H2,0(cs)

− 8
r

}
log(cs). (9)

The constants h1, H1,k1
, and H2,k2

are expressed as

h1 =
1

r

Γ( 4r )Γ(4)

Γ( 12 )

H1,k1
=

1

2r2
Γ( 4+k1

r )

Γ( 12 − k1)

H2,k2
=

1

2r2
Γ( 8+k2

r )

Γ( 12 − k2)
.

Thus, using the relation

lim
r→∞

Γ(xr )

r
=

1

x
and lim

r→∞ s−
k
r = 1,

the limits of each term in (9) are calculated as

lim
r→∞

[
h1(cs)

− 4
r

]
= lim

r→∞

[
1

r

Γ( 4r )Γ(4)

Γ( 12 )

(
Ω

2

)−4

s−
4
r

]

=
3

2
√
π

(
Ω

2

)−4

(10)
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Fig. 2. BERs and diversity order of SDF cooperative network with the
proposed best relay selection (The diversity plots are scaled for the clarity of
view).

lim
r→∞

[
H1,4(cs)

− 8
r log(cs)

]
= lim

r→∞

[
1

2r2
Γ( 8r )

Γ(− 7
2 )

(
Ω

2

)−8

s−
8
r log

(
Ω

2

)r
]

=
7 · 5 · 3
28
√
π

(
Ω

2

)−8

log

(
Ω

2

)
(11)

lim
r→∞

[
H2,0(cs)

− 8
r log(cs)

]
= lim

r→∞

[
1

2r2
Γ( 8r )

Γ(− 1
2 )

(
Ω

2

)−8

s−
8
r log

(
Ω

2

)r
]

=− 1

25
√
π

(
Ω

2

)−8

log

(
Ω

2

)
. (12)

Summing up the above results, (8) is approximated as

lim
r→∞MZm

(s) ≈ 1

21032

(
Ω

2

)−4
[
3 +

95

27

(
Ω

2

)−4

log

(
Ω

2

)]
.

Let γmax =
∑M

m=1 Zm where Zm’s are i.i.d. random variables

for m = 1, · · ·,M . Then, the MGF for γmax can be obtained

as

Mγmax(s) ≈
{

1

21032

(
Ω

2

)−4
[
3 +

95

27

(
Ω

2

)−4

log

(
Ω

2

)]}M

as r →∞.

From the above result, we can conclude that the diversity

order of S → Rm̂ → D is 4M . Since the diversity order of

S → D is four, the diversity order of the cooperative network

with the proposed best relay selection under ML decoder is

4(M + 1).
Fig. 2 shows the analytical and numerical results for the

cooperative network with the proposed best relay selection

when the uniform power allocation between S and Rm̂ is

used, i.e., P1 = P2 = P/2. The ‘Pade approximation’ results

are obtained using Padé approximation technique [11]. As

the number of the relays increases, the BER performance of

the proposed scheme is always enhanced. And also, diversity

orders from PEP are plotted. From this result, we can confirm

that the proposed scheme has full diversity order.

IV. CONCLUSION

In this paper, the performance of best relay selection scheme

has been shown. The PEP and diversity of the proposed relay

selection scheme has been derived. And it has been shown that

it has full diversity. From the numerical results, it has been

shown that the best relay selection scheme has full diversity

order.
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