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Abstract—In this paper, all subgraph patterns of protographs
which prevent quasi-cyclic (QC) low-density parity-check (LDPC)
codes from having large girth are searched in allowance with
multiple edges based on graph theoretic approach. A systematic
construction of protograph with multiple edges using combina-
torial design is proposed for QC LDPC codes with girth larger
than or equal to 12.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] have been one
of the major topics for many coding theorists over the past
decade due to its near capacity-approaching performance.
Since the low decoding complexity for the LDPC codes
is achieved by various iterative decoding algorithms, LDPC
codes can be adopted in many practical applications. Es-
pecially quasi-cyclic (QC) LDPC codes are well suited for
hardware implementation composed of simple shift registers
due to the regularity in their parity-check matrices.

Thorpe [2] introduced the concept of protograph codes,
a class of LDPC codes lifted from protographs. QC LDPC
codes belong to protograph codes because they can be regarded
as the lifted ones from the corresponding protographs using
cyclic permutation. Therefore, the construction of good QC
LDPC codes mainly depends on successful design of their
protographs.

There have been many efforts on the construction for QC
LDPC codes with large girth. In [3], they constructed some
protographs whose protograph codes can have large girth using
combinatorial design, and considered only the protographs
which have a single edge between two nodes. However, the QC
LDPC codes lifted from the protographs with multiple edges
between two nodes can show better performance due to the
flexibility in adjusting their degree distribution, and they can
have larger minimum distance according to [4]. In this paper,
we suggest the method of protograph design for QC LDPC
codes with multiple edges and large girth using combinatorial
design.

II. SUBGRAPH PATTERNS OF PROTOGRAPHS

In order for a QC LDPC code to have large girth, its pro-
tograph should not have any subgraph pattern which prevents
the LDPC code from having large girth. For search of those

subgraph patterns, we need to review some remarkable results
based on graph theory [5].

A. Preliminary

By abuse of notation, let P denote both a (bipartite)
protograph and its incidence matrix. And let P = [pij ], where
pij is a non-negative integer, and thus the horizontal node i
and the vertical node j is connected each other via pij edge(s).
If pij ≥ 2, there are multiple edges between the two nodes.
As the work of [5], we will define two classes of graphs.
Define an (a1, a2, a3)-theta graph, denoted by T (a1, a2, a3),
to be a graph consisting of two vertices, each of degree three,
that are connected to each other via three disjoint paths A1,
A2, A3 of the number of edges a1 ≥ 1, a2 ≥ 1, and
a3 ≥ 1, respectively. And also define a (c1, c2; b)-dumbbell
graph, denoted D(c1, c2; b) to be a connected graph consisting
of two edge-disjoint cycles C1 and C2 of the number of edges
c1 ≥ 1 and c2 ≥ 1, respectively, that are connected by a path
B of the number of edges b ≥ 0.

The girth of a QC LDPC code is determined by both the
structure of the protograph and its shift values. However, we
can derive the upper bound of the girth by introducing the
concept of inevitable cycle [3] for the protograph. The length
of an inevitable cycle for a protograph P is defined as the
maximum of positive integer n such that for every lift size
and every shift value assignment, the QC LDPC code lifted
from P must have a cycle of length n.

B. Searching Subgraph Patterns

The subgraph pattern P2i is defined as follows: 1) P2i has
the inevitable cycle with length 2i; 2) P2i does not have any
subgraph which has an inevitable cycle with the length smaller
than 2i; 3) The number of rows is not smaller than that of
columns; 4) For an isomorphic class of graphs, only one matrix
P2i must be given as a representative. The next two theorems
can be directly derived from [5], and their proofs are omitted.

Theorem 1: P2i must be either a theta graph or a dumbbell
graph.

Theorem 2: T (a1, a2, a3) has an inevitable cycle with the
length of 2(a1+ a2+ a3). D(c1, c2; b) has an inevitable cycle
with the length of 2(c1 + c2) + 4b.
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Now we can find all subgraph patterns from T (a1, a2, a3)
and D(c1, c2; b). Since P2i’s are bipartite graphs, the param-
eters should satisfy the following conditions: 1) a1 ≥ a2 ≥
a3 ≥ 1; 2) a1, a2, a3 have the same parity; 3) c1 ≥ c2 ≥ 2,
b ≥ 0; 4) c1 and c2 are even. All subgraph patterns with the
length of the inevitable cycle up to 18 are listed as belows.

P6 = [3]

P8 =
[
2 2

]

P10 =

[
2 1
1 1

]

P12 =

[
2 1
0 2

]
,

[
2 1 1
0 1 1

]
,

[
1 1 1
1 1 1

]

P14 =



2 1 0
1 0 1
0 1 1


 ,



1 1 1
1 1 0
1 0 1




P16 =

[
2 1 0
0 1 2

]
,



2 1 0
0 1 1
0 1 1


 ,



2 1 0 1
0 1 1 0
0 0 1 1


 ,



1 1 0 0
1 1 1 1
0 0 1 1


 ,



1 1 1 0
1 1 0 1
0 0 1 1




P18 =



2 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


 ,



1 1 0 0
1 1 1 0
0 0 1 1
0 1 0 1


 ,



1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1




III. REGULAR PROTOGRAPH CONSTRUCTION

In this section, we will focus on the construction of regular
protographs using combinatorial design.

A. Balanced Ternary Design

A balanced ternary design BTD(V,B; ρ1, ρ2, R;K,Λ) [6]
is an arrangement of V elements into B multisets, or blocks,
each of cardinality K (K ≤ V ), satisfying: 1) Each element
appears R = ρ1+2ρ2 times altogether, with multiplicity one in
exactly ρ1 blocks, with multiplicity two in exactly ρ2 blocks;
2) Every pair of distinct elements appears Λ times; i.e., if
mvb is the multiplicity of the vth element in the bth block,
then for every pair of distinct elements v and w, we have∑B

b=1 mvbmwb = Λ.

B. Regular QC LDPC Codes With Girth Larger Than or Equal
to 12

In order for a QC LDPC code to have the girth larger than or
equal to 12, the protograph should not have P6, P8, P10 as its
subgraphs. For P6, ‘3’ must not appear in the protograph. For
P8, any pair of ‘2’s should not exist in a row and in a column.
It is not simple for P10, but we can construct the protograph
which does not contain all of P6, P8, P10 by using balanced
ternary design.

The incidence matrix of a BTD(V,B; ρ1, ρ2, R;K,Λ) can
be regarded as a V × B protograph. And the variable node

TABLE I
BALANCED TERNARY DESIGN WITH ρ2 = 1,Λ = 2, V/B < 1, R ≤ 15

V 6 12 9 20 12 30 42 48 42 15 60

B 12 24 27 40 48 60 63 64 84 75 100

K 3 4 3 5 3 6 8 9 7 3 9

R 6 8 9 10 12 12 12 12 14 15 15

degree and the check node degree of its lifted QC LDPC
code become K and R, respectively. The condition ρ2 = 1
means that only one ‘2’ exists in each row of the protograph.
And Λ = 2 implies that each column of the protograph may
have at most one ‘2’ and that P10 must not appear in the
protograph. Table I lists all possible parameters of balanced
ternary design with R ≤ 15 [7] suitable for the protographs
of QC LDPC codes. As an example, the incidence matrix of a
BTD(6, 12; 4, 1, 6; 3, 2) is shown as below, and we can check
that no subgraph pattern P2i with i ≤ 12 does not appear.




2 1 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 2 1 1 1 0 0 0
0 2 0 0 0 1 0 0 0 1 1 1
0 0 2 0 0 0 1 1 0 1 1 0
0 0 0 2 0 0 1 0 1 1 0 1
0 0 0 0 2 0 0 1 1 0 1 1




IV. CONCLUSION

The subgraph patterns of protographs which cause inevitable
cycles were fully searched from the graph theoretic approach
in allowance with multiple edges in the protographs. For QC
LDPC codes with girth larger than or equal to 12, we proposed
the combinatorial method of constructing protographs using
balanced ternary design.
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