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Abstract—In OFDM systems, high peak-to-average power ratio
(PAPR) of OFDM signals is one of the most important problem.
As a solution of the PAPR problem in OFDM systems, partial
transmit sequence (PTS) scheme is quite a suitable scheme due
to its PAPR reduction performance and distortion characteristic.
However, high computational complexity is serious problem
in the PTS scheme. In this paper, in order to reduce the
computational complexity of the previous PTS schemes, efficient
PTS scheme is proposed. Although the proposed PTS scheme
uses dominant time-domain samples similar to some previous
low-complexity PTS schemes, they utilize more efficient selection
method for dominant time-domain samples. The proposed PTS
scheme lowers the computational complexity compared to the
previous PTS schemes while achieving the optimal PAPR reduc-
tion performance.

Keywords—Dominant time-domain samples, orthogonal fre-
quency division multiplexing (OFDM), partial transmit sequence
(PTS), peak-to-average power ratio (PAPR).

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is a technique of encoding data on multiple

sub-carriers in the wireless communication systems. OFDM
has high spectral efficiency and easy adaptation to severe
channel without complex time-domain equalization. A
communication system using OFDM is robust against inter-
symbol interference (ISI) and fading caused by multipath
propagation, as well as narrow-band co-channel interference.
In addition, the OFDM system is efficient for hardware
implementation because it can use fast Fourier transform
(FFT) instead of discrete Fourier transform (DFT). Besides,
it has low sensitivity to time synchronization errors. Due
to these various and valuable advantages described as
above, OFDM has been adopted as one of the most popular
modulation technique for wireless communications. OFDM
has been used in the various applications such as digital
audio broadcasting (DAB), digital video broadcasting (DVB),
digital media broadcasting (DMB), wireless local area
network (WLAN) IEEE 802.11 [1], long term evolution
(LTE), and LTE Advanced 4G mobile phone standards. Also,
OFDM is a candidate for 5G mobile phone standards.
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However, OFDM has not only the advantages but also
some disadvantages. High peak-to-average power ratio (PAPR)
of OFDM signals is one of the most serious problems in
OFDM systems. Due to the non-linear property of high power
amplifier (HPA), HPA output of OFDM signals with high
PAPR causes in-band distortion and out-of-band radiation,
which result in degradation of communication quality such
as bit error rate (BER).

In order to solve the PAPR problems in OFDM systems,
various PAPR reduction schemes have been proposed [2]–
[8]. Among these PAPR reduction schemes, SLM and PTS
schemes can effectively reduce the PAPR of OFDM signals
without causing signal distortion. SLM and PTS schemes
require several inverse fast Fourier transform (IFFT) to gener-
ate candidate signals among which a candidate signal with
the lowest PAPR is selected and then transmitted. In an
OFDM system, since FFT and IFFT operations account for
a substantial part of hardware complexity, IFFT operations to
generate candidate signals in SLM or PTS schemes can lay
an additional burden on the system. In general, PTS schemes
require less IFFT operations to generate several candidate
signals, compared with SLM schemes.

The conventional PTS scheme [8] has great PAPR reduction
performance with simple idea that a signal with the lowest
PAPR is selected for transmission among candidate signals
generated by efficient methods. However, since the conven-
tional PTS scheme requires a lot of computational complexity,
various low-complexity PTS schemes have been proposed
[9]–[19]. Recently, a new type of reduced-complexity PTS
(RC-PTS) [17] was proposed to reduce the computational
complexity by estimating the PAPRs of candidate OFDM
signals based on only the selected dominant time-domain
samples and find the signal with the lowest estimated PAPR.
After that, two improved PTS schemes, low-complexity PTS
(LC-PTS) [18] and the other low-complexity PTS (OLC-PTS)
[19] have been proposed to further reduce the computational
complexity and enhance the PAPR reduction performance of
RC-PTS.

In this paper, a new low-complexity PTS scheme is pro-
posed to further reduce computational complexity compared
with PTS schemes by using a more efficient selection method



for dominant samples compared with RC-PTS and LC-PTS.
This PTS scheme uses advanced sub-signal rotation method,
which has adaptive property for further reducing its computa-
tional complexity. The proposed PTS scheme has much lower
computational complexity compared with RC-PTS and LC-
PTS while achieving the optimal PAPR reduction performance,
which is the same as that of the conventional PTS.

The rest of the paper is organized as follows. In Section II,
for easy understanding of the proposed PTS schemes, some
important preliminaries are reviewed. Then, the efficient PTS
scheme with adaptive selection method for dominant time-
domain samples is proposed in Section III. In Section IV,
the computational complexity of the proposed PTS scheme
is analyzed and the simulation results of the computational
complexity and the PAPR reduction performance are provided.
Finally, conclusions are given in Section V.

II. PRELIMINARIES

A. OFDM and PAPR
In OFDM systems, a serial block of N modulated symbols

is organized from serial original data bits and converted to
a parallel block to generate the corresponding N frequency-
domain OFDM symbols. A time-domain OFDM signal is
generated by adding N OFDM symbols modulated onto the
corresponding N orthogonal sub-carriers (sub-channels) with
same bandwidth. The complex baseband OFDM signal xt is
obtained as

xt =
1√
N

N−1∑
k=0

Xke
j2πk∆ft, 0 ≤ t ≤ NT (1)

where j =
√
−1 , ∆f denotes the sub-carrier bandwidth, and

NT denotes the period of the N OFDM symbols. Note that
sub-carriers of the OFDM signal satisfy the condition ∆f =
1/NT for the orthogonal relationship.

The PAPR of the original OFDM signal is defined as

PAPR =

max
0≤t≤NT

|xt|2

E[|xt|2]
(2)

where E[·] denotes the expectation. For efficient approxima-
tion of xt and its PAPR, only NL samples of xt called L-
times oversampled OFDM signals are considered, where L
denotes the oversampling factor and is an integer larger than
or equal to 1. L-times oversampled OFDM symbols X =
[X0, X1, · · · , XLN−1]T are obtained by padding consecutive
(L − 1)N zero symbols [0, 0, · · · , 0]︸ ︷︷ ︸

(L−1)N

T to middle or end of

the original OFDM symbols. L-times oversampled OFDM
symbols X are transformed to L-times oversampled OFDM
signals x = [x0, x1, · · · , xLN−1]T of which an element xn is
represented by

xn =
1√
LN

LN−1∑
k=0

Xke
j2πkn
LN , 0 ≤ n ≤ LN − 1. (3)

It is well known that the OFDM signals x can be interpreted
as the inverse discrete Fourier transform (IDFT) of the OFDM

symbols X. In OFDM systems, OFDM signals are generated
by using the IFFT operation, which reduces computational
complexity of the IDFT.

It is generally known that the PAPR of the original OFDM
signal can be precisely estimated from not Nyquist-rate sam-
pled OFDM signal with L = 1 but oversampled OFDM signal
with L = 4. The PAPR of the L-times oversampled OFDM
signals x is calculated as

PAPR(x) =

LN−1
max
n=0

|xn|2

E[|xn|2]
. (4)

In general, OFDM signals have the high PAPR value and this
high PAPR is one of the most significant problems in OFDM
systems. The conventional PTS scheme can resolve the PAPR
problem of OFDM signals as in the following subsection.

B. Conventional PTS Scheme

In the first stage of the conventional PTS scheme, input
OFDM symbols X are partitioned into V disjoint sub-blocks
Xv = [Xv,0, Xv,1, · · · , Xv,N−1]T , 0 ≤ v ≤ V − 1, satisfying
the condition such that

X =

V−1∑
v=0

Xv. (5)

By applying IFFT to each sub-blocks, the sub-signals xv =
[xv,0, xv,1, · · · , xv,N−1]T , 0 ≤ v ≤ V − 1 are generated. In
order to generate candidate OFDM signals, each sub-signals
is differently multiplied by the phase rotating factor bv = ejφv ,
where φv ∈ [0, 2π) for v = 0, · · · , V − 1. The phase rotating
factor is usually an element of the finite set given as bv ∈
{ej2πl/W | l = 0, 1, · · · ,W − 1}, where W is the number
of allowed phase rotating factors. The phase rotating vectors
to generate the candidate OFDM signals are represented by
b(u) = [b

(u)
0 , b

(u)
1 , · · · , b(u)

V−1], u = 0, 1, · · · , U − 1. By using
the u-th phase rotating vector, the u-th candidate OFDM signal
x(u) is generated as

x(u) = [x
(u)
0 , x

(u)
1 , · · · , x(u)

N−1]T

=

V−1∑
v=0

b(u)
v xv, u = 0, 1, · · · , U − 1

(6)

where U is the number of candidate OFDM signals to be
generated. Since all the first phase rotating factors b(0)

v , 0 ≤
v ≤ V − 1 are usually fixed to 1, U = WV−1 candidate
OFDM signals are generated in the conventional PTS scheme
[8]. In the last stage of the conventional PTS scheme, among
U candidate OFDM signals, the optimal OFDM signal x(uopt)

which has the minimum PAPR value is selected for the
transmitted OFDM signal, where uopt denotes the index of
the optimal OFDM signal, that is,

uopt = arg
U−1
min
u=0

PAPR(x(u)). (7)

Although the conventional PTS scheme can achieve con-
siderable PAPR reduction with simple but highly effective
method, there are some disadvantages. High computational



Fig. 1. A block diagram of the conventional PTS scheme.

complexity is the main disadvantage of the conventional PTS
scheme. In the conventional PTS scheme, most of the compu-
tational complexity comes from V IFFTs and the generation
and PAPR calculation of U candidate OFDM signals. In
the following subsection, recently proposed low-complexity
PTS schemes [17], [18] which mainly reduce the computa-
tional complexity required for calculation of candidate OFDM
signals are introduced. These low-complexity PTS schemes
have the same idea that only a few dominant samples of
OFDM signals are used for the PAPR calculation instead of
all the samples. They reduce the computational complexity
considerably while maintaining the same PAPR reduction
performance (optimum) compared with the conventional PTS
scheme.

C. Low-Complexity PTS Schemes Using Dominant Time-
Domain Samples

RC-PTS [17] was the firstly proposed low-complexity
PTS scheme using dominant time-domain samples. This PTS
scheme utilizes only a part of time-domain samples to estimate
the peak power of each candidate OFDM signal, which are
called dominant samples. In RC-PTS, dominant samples are
selected by using a metric Qn given as

Qn =

V−1∑
v=0

|xv,n|2. (8)

For an index n, if Qn is greater than or equal to a pre-set
threshold γQ, the time-domain sample xn is selected for a
dominant sample. The set of indices of the dominant samples
is denoted by

SQ(γQ) = {n | Qn ≥ γQ, 0 ≤ n ≤ LN − 1}. (9)

Among all time-domain samples, only the dominant samples
with indices in SQ(γQ) are multiplied by the corresponding
phase rotating vectors and used to estimate the PAPR of each
candidate OFDM signal. Then, in RC-PTS, the OFDM signals
x(uopt) selected for transmission is the candidate signal with
index uopt which is represented by

uopt = arg
U−1
min
u=0

max
n∈SQ(γQ)

∣∣∣∣∣
V−1∑
v=0

b(u)
v xv,n

∣∣∣∣∣
2

. (10)

Although the number of candidate OFDM signals of RC-
PTS is the same as that of the conventional PTS scheme, the

computational complexity for calculating of each candidate
OFDM signals of RC-PTS is much less than that of the
conventional PTS scheme. Therefore, it is clear that RC-PTS
significantly reduces the computational complexity compared
with the conventional PTS scheme.

The maximum power of the n-th sample among U candidate
OFDM signals in the conventional PTS scheme is denoted by
Vn, which is represented by

Vn =
U−1
max
u=0

∣∣∣x(u)
n

∣∣∣2
=

U−1
max
u=0

∣∣∣∣∣
V−1∑
v=0

b(u)
v xv,n

∣∣∣∣∣
2

, n = 0, 1, · · · , LN − 1

(11)

where b
(u)
v and the metric Vn constitute the n-th phase

rotating vector b(u) = [b
(u)
0 , b

(u)
1 , · · · , b(u)

M−1] and V =
[V0, V1, · · · , VN−1], respectively. In other words, Vn indicates
the upper bound of the powers obtained from the n-th samples
of the candidate OFDM signals. It implies that greater Vn
means higher probability that peak power of the candidate
OFDM signals occurs at the n-th sample. Therefore, Vn is the
proper metric to select dominant samples which determine the
PAPRs of the candidate OFDM signals.

After the RC-PTS had been proposed, the LC-PTS [18]
utilizing the metric Vn was proposed to further reduce the
computational complexity of the conventional PTS scheme
and the RC-PTS. Instead of directly using Vn, the LC-PTS
uses estimation of Vn with significantly less computational
complexity. In the LC-PTS, estimation of Vn is obtained by
doing only a few search over proper phase rotating vectors,
instead of doing full search over all phase rotating vectors.
In order to accurately estimate Vn of the n-th time-domain
sample for all candidate OFDM signals, the n-th time-domain
samples of the v-th sub-block except the first sub-block
xv,n, 1 ≤ v ≤ V − 1 are rotated to a finite number of sub-
planes of the complex plane on x0,n is located.

In the LC-PTS, the proposed metric Pn to estimate the
maximum power Vn is calculated by

Pn =
C−1
max
c=0

∣∣∣x(Kn(c))
n

∣∣∣2 (12)

where Kn(c), 0 ≤ c ≤ C − 1 are indices of a small number
of candidate signals selected by properly rotating time-domain
sub-samples. The index set of dominant samples obtained by
using Pn is denoted by SP (γP ), which is represented by

SP (γP ) = {n | Pn ≥ γP , 0 ≤ n ≤ LN − 1} (13)

where γP is a pre-set threshold. Then, only the sub-samples
with the indices in SP (γP ) are used for calculating the
PAPR of each candidate OFDM signal. Since Pn is a good
approximation of Vn, the LC-PTS can achieve a substantial
reduction of computational complexity in calculating the PA-
PRs of candidate OFDM signals while accurately estimating
the PAPRs. In the LC-PTS, the OFDM signal x(uopt) selected



for transmission is the candidate signal with index uopt which
is represented by

uopt = arg
U−1
min
u=0

max
n∈SP (γP )

∣∣∣∣∣
M−1∑
m=0

b(u)
m xm,n

∣∣∣∣∣
2

. (14)

III. PROPOSED PTS SCHEME

A. Notations
For easy understanding of the proposed PTS scheme, nota-

tions for several sub-planes of 2-dimensional complex plane
are defined. These sub-planes are utilized to select a candidate
in the 2-dimensional plane. First of all, eight half-planes
{Pi}, 0 ≤ i ≤ 7 are defined as in Fig. 2(a). Also, eight
quadrants {Qi}, 0 ≤ i ≤ 7 are defined as in Fig. 2(b). In
addition, eight 45◦-sub-planes {Ri}, 0 ≤ i ≤ 7 are defined as
in Fig. 2(c). Note that the variable i used in these sub-planes
is integer to indicate indices of the sub-planes.

For a complex value x and a 2-dimensional complex sub-
plane S, x ∈ S denotes that x is located in S. For two 2-
dimensional complex sub-planes S1 and S2, S1 ∪ S2 denotes
the combination sub-plane of S1 and S2. i%j denotes the
modulo operation that finds the remainder after division of
i by j.

B. Proposed Selection Method of Candidate Samples for
Dominant Samples

In this subsection, an advanced low-complexity PTS scheme
(AL-PTS) using dominant samples is proposed. AL-PTS uses
an adaptive selection method of candidate time-domain sam-
ples to select dominant samples.

The detailed procedures of the proposed adaptive selec-
tion method of candidate time-domain samples to select the
dominant samples are described as follows. Suppose that the
first time-domain sub-sample x0,n of original OFDM signal
sample xn is located in Ri. For each n, select the index set
of candidate samples, Kn(c) by using one selection method
adaptively among below three ones S1, S2, and S3. Note that
size of Kn(c), that is, the number of candidate samples for
each n can be different each other, contrary to that in the
LC-PTS.
S1) If all sub-samples xv,n, 1 ≤ v ≤ V −1 except x0,n, sat-

isfy below condition (C1), select two candidate samples
of which all the sub-samples are located in the 135◦-
sub-planes R(i%8)∪Q((i+1)%8) and R(i%8)∪Q((i+6)%8),
respectively.
C1) One or more xv,n are located in R((i+2)%8) ∪

R((i+6)%8) and the others are located in R(i%8) ∪
R((i+4)%8).

S2) If all xv,n except x0,n do not satisfy C1 but one of
the below 5 conditions (C2-1–C2-5), select only one
candidate sample.

C2-1) All xv,n except x0,n are located in Q(i%8) ∪
Q((i+4)%8).

S2-1) In case of C2-1, select the candidate sample
of which all the sub-samples are located in the
quadrant Q(i%8).

(a) Eight half-planes of complex plane.

(b) Eight quadrants of complex plane.

(c) Eight 45◦-sub-planes of complex plane.

Fig. 2. Sub-planes of complex plane.

C2-2) All xv,n except x0,n are located in Q((i+3)%8) ∪
Q((i+7)%8).

S2-2) In case of C2-2, select the candidate sample
of which all the sub-samples are located in the
quadrant Q((i+7)%8).

C2-3) At least two xv,n except x0,n are located
in R((i+1)%8) ∪ R((i+5)%8) and R((i+3)%8) ∪
R((i+7)%8), respectively and the others are located
in (R((i+2)%8) ∪R((i+6)%8))

c.
S2-3) In case of C2-3, select the candidate sample

of which all the sub-samples are located in the
135◦-subplane Q(i%8) ∪R((i+7)%8).

C2-4) At least two xv,n except x0,n are located
in R((i+1)%8) ∪ R((i+5)%8) and R((i+2)%8) ∪
R((i+6)%8), respectively and the others are located
in (R((i+3)%8) ∪R((i+7)%8))

c.



S2-4) In case of C2-4, select the candidate sample
of which all the sub-samples are located in the
135◦-subplane Q((i+1)%8) ∪R(i%8).

C2-5) At least two xv,n except x0,n are located
in R((i+2)%8) ∪ R((i+6)%8) and R((i+3)%8) ∪
R((i+7)%8), respectively and the others are located
in (R((i+1)%8) ∪R((i+5)%8))

c.
S2-5) In case of C2-5, select the candidate sample

of which all the sub-samples are located in the
135◦-subplane Q((i+7)%8) ∪R((i+6)%8).

S3) Otherwise, select four candidate samples of which all
the partial samples are located in the half-planes P(i%8),
P((i+1)%8), P((i+2)%8), and P((i+7)%8), respectively.

Note that the above selection method is for W = 2 and that
for W = 4 is similar with that for W = 2.

In the proposed PTS, the proposed metric Tn to estimate
the maximum power Vn is computed as

Tn =
Cn−1
max
c=0

∣∣∣x(Kn(c))
n

∣∣∣2 (15)

where the number of candidate sample Cn has a different value
for each n. The index set of dominant samples obtained by
using Tn is denoted by ST (γT ), which is represented by

ST (γT ) = {n | Tn ≥ γT , 0 ≤ n ≤ LN − 1} (16)

where γT is a pre-set threshold. Then, only the sub-samples
with the indices in SP (γP ) are used to calculate the PAPR
of each candidate OFDM signal. Finally, the OFDM signal
x(uopt) selected for transmission in AL-PTS is the candidate
signal with index uopt given by

uopt = arg
U−1
min
u=0

max
n∈ST (γT )

∣∣∣∣∣
M−1∑
m=0

b(u)
m xm,n

∣∣∣∣∣
2

. (17)

IV. PERFORMANCE ANALYSIS

A. Computational Complexity

This subsection compares the computational complexity of
the conventional PTS scheme, RC-PTS [17], LC-PTS [18],
and the proposed PTS scheme (AL-PTS). For comparison, the
ratio pγ is defined as the ratio between the number of selected
dominant samples and the number of all time-domain samples,
that is

pγ =
Nγ
LN

. (18)

Table I compares the computational complexity after IFFT
computations of the conventional PTS, RC-PTS, LC-PTS, and
AL-PTS by using parameters N , L, V , and W . Note that the
parameter pγ or Nγ is used for representing the computational
complexity of PTS, RC-PTS, LC-PTS, and AL-PTS. Also,
the variables C and Cn, 0 ≤ n ≤ LN − 1 are used for
representing the computational complexity of LC-PTS and
AL-PTS, respectively.

TABLE I
COMPUTATIONAL COMPLEXITY AFTER IFFT COMPUTATION IN PTS

SCHEMES

PTS scheme Number of complex multiplications
Conventional PTS LNV

RC-PTS LNV + pγLNU = LNV +NγU

LC-PTS LNC + pγLNU = LNC +NγU

AL-PTS
∑LN−1
n=0 Cn + pγLNU =

∑LN−1
n=0 Cn +NγU

B. Simulation Results

This subsection compares the PAPR reduction performance
of the conventional PTS, RC-PTS, LC-PTS, and AL-PTS.
Fig. 3 compares the PAPR reduction performance of these
PTS schemes for L = 4, M = 8, and W = 2, where
N = 256 and N = 1024 in Fig. 3(a) and Fig. 3(b),
respectively. For fair comparison, Nγ and the corresponding
pγ are differently set in RC-PTS, LC-PTS, and AL-PTS, such
that they achieve the optimal PAPR reduction performance,
which is the same as that of the conventional PTS with their
respective minimum Nγ and pγ . Note that the respective
minimum Nγ and pγ of RC-PTS, LC-PTS, and AL-PTS
for the optimal PAPR reduction performance is obtained by
exhaustive search. Therefore, RC-PTS, LC-PTS, and AL-PTS
all achieve the optimal PAPR reduction performance but their
required Nγ and pγ are all different. In Fig 3(a), Nγs of RC-
PTS, LC-PTS, and AL-PTS are 56, 15, and 51, respectively
and therefore the corresponding pγs of them are 0.055, 0.015,
and 0.05, respectively. Also, in Fig 3(b), Nγs of RC-PTS,
LC-PTS, and AL-PTS are 102, 16, and 164, respectively and
therefore the corresponding pγs of them are 0.025, 0.004, and
0.04, respectively.

Table II compares the computational complexity of the
conventional PTS, RC-PTS, PS-PTS, and LA-PTS for L = 4,
M = 8, and W = 2, where N = 256 and N = 1024 in
sub-figure Fig. II(a) and Fig. II(b), respectively. As in Fig.
3, in Table II, Nγ and the corresponding pγ are differently
set in RC-PTS, LC-PTS, and AL-PTS, such that they achieve
the optimal PAPR reduction performance, which is the same
as that of the conventional PTS with their minimum Nγ and
pγ . In Table II(a), compared with the conventional PTS, AL-
PTS shows the lowest computational complexity (22.2%) with
achieving the same PAPR 8.7 dB at CCDF = 10−4, which
is optimum as shown in Fig. 3(a). On the other hand, RC-
PTS and LC-PTS show the relative computational complexity
(55.5%) and (51.5%) with the optimal PAPR, respectively.
Also, in Table II(b), compared with the conventional PTS,
AL-PTS shows the lowest relative computational complexity
(21.3%) with achieving the same PAPR 9.5 dB at CCDF
= 10−4, which is optimum as shown in Fig. 3(b). On the other
hand, RC-PTS and LC-PTS show the relative computational
complexity (52.5%) and (50.4%) with the optimal PAPR,
respectively.
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Fig. 3. PAPR reduction performance of PTS schemes for 16-QAM, L = 4,
V = 4, and W = 2.

TABLE II
COMPUTATIONAL COMPLEXITY AFTER IFFT COMPUTATION IN PTS

SCHEMES FOR 16-QAM, L = 4, V = 4, AND W = 2

(a) N = 256

PTS scheme Number of complex multiplications
Conventional PTS 8192 (100%)

RC-PTS (Nγ = 56, pγ = 0.055) 4216 (55.5%)

LC-PTS (Nγ = 15, pγ = 0.015) 4216 (51.5%)

AL-PTS (Nγ = 51, pγ = 0.05) 1821 (22.2%)

(b) N = 1024

PTS scheme Number of complex multiplications
Conventional PTS 32768 (100%)

RC-PTS (Nγ = 102, pγ = 0.025) 17200 (52.5%)

LC-PTS (Nγ = 16, pγ = 0.004) 16512 (50.4%)

AL-PTS (Nγ = 164, pγ = 0.04) 6964 (21.3%)

V. CONCLUSION

In this paper, in order to lower the computational complex-
ity of the PTS schemes, the advanced low-complexity PTS

schemes is proposed. Although the proposed PTS scheme uses
dominant samples similar to some previous low-complexity
PTS schemes, it utilizes more efficient selection method of
the dominant samples. The proposed PTS scheme reduces
the computational complexity much more compared to the
previous PTS schemes while achieving the optimal PAPR
reduction performance.
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