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A New Family of Binary Pseudorandom 
Sequences Having Optimal Periodic 

Correlation Properties and Large 
Linear Span 

Abstract-A collection of families of binary (0 , l )  pseudorandom se- 
quences is introduced. Each sequence within a family has period N = 2" - 1, 
where n = 2.  rn is an even integer. There are 2"' sequences within a family, 
and the maximum over all (nontrivial) auto and cross-correlation values 
equals 2" + 1. Thus these sequences are optimum with respect to the 
Welch bound on the maximum correlation value. Each family contains a 
Gordon-Mills- Welch (GMW) sequence, and the collection of families 
includes as a special case the small set of Kasami sequences. The linear 
span of these sequences varies within a family but is always greater than or 
equal to the linear span of the GMW sequence contained within the 
family. Exact closed-form expressions for the linear span of each sequence 
are given. The balance properties of such families are evaluated, and a 
count of the number of distinct families of given period N that can be 
constructed is also provided. 

I. INTRODUCTION 

OR signature sequences in a spread-spectrum multi- F ple-access communication system, it is desirable to 
employ code sequences having low nontrivial auto and 
cross-correlation values and large linear span [1]-[3], [15]. 

The families of bent [5]-[7] and Gold [8], [9] sequences, 
as well as the small and large families of Kasami sequences 
[lo], [ l l ]  all have desirable correlation properties. How- 
ever, of these all but the bent sequences possess extremely 
small values of linear span. 

We present new families of binary sequences (which we 
call families of No sequences') which have optimal (with 
respect to the Welch bound [12]) correlation properties and 
large linear span. Each sequence within a No family has 
period = 2" - 1, where n = 2-m is an even integer. There 
are 2" sequences withn the family and the maximum over 
all nontrivial auto- and cross-correlation values equals 
2" +l. Within each family is contained a Gordon- 
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Mills-Welch (GMW) sequence [4], and the families of 
sequences include the families of Kasami sequences (small 
set) [3] as a special case. The linear span of these sequences 
varies within a family but is always greater than or equal 
to the linear span of the GMW sequence contained within 
the family. A comparison of the properties of the various 
sequence families including the No families is presented in 
Table I. 

The No sequence families are introduced in Section I1 
and their correlation properties proven to be optimal with 
respect to the Welch bound. The balance properties of 
these sequences, as well as their relation to GMW and 
Kasami sequences, also are discussed here. Closed-form 
expressions for the linear spans of these sequences are 
derived in Section 111. In Section IV we show how these 
sequences may be implemented; Section V provides an 
example. In Section VI we conclude with a count of the 
number of distinct families of a given period. 

11. OPTIMALITY OF THE CORRELATION VALUES 

For any pair of integers k ,  1 > 0, kll, the trace function 
trL(.) is a function mapping from GF(2') to GF(2k) 
according to the rule 

I 
- -1 
k 

trL(x) = x'". (1) 
j = O  

n 

2 
Let n, n > 0 be even, set N =  2" -1, m = -, and T =  2" 

+ 1. Then a family of No sequences is a collection 

S =  ( s , ( t ) l O ~ t ~ N - l ,  11i12") (2) 

of 2"' binary (0 , l )  sequences given by 

( 3 )  

where a is a primitive element of GF(2"), the integer r ,  
1 I r < 2" - 1, satisfies gcd( r ,  2" - 1) = 1, and the ele- 
ments y, range over all of GF(2") taking on each value 
exactly once as i ranges between 1 and 2". 
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TABLE I 
COMPARISON OF VARIOUS FAMILIES OF SEQUENCES 

Maximum Linear Range of 
Size of Correlation Span Sequence 

Family Period n Family Value Range" Imbalance 

Gold 2" -1  2 m + 1  2 "+1  1+2(n+1)/2 = 2n [1,2(n+1)/2 + 11 
Gold 2" -1  4m + 2  2 "+1  1+2(n+2)/2 = 2n [1,2(n+2)/2 +1] 

2 " - 1  2m 2"/2 1 + 2"/2 5 3n/2 [1,2"/2 + 11 Kasami 
(Small Set) 

(Large Set) 
Kasami 2" -1  4m+2  2"/2(2"+1) 1 + 2 ( " + ~ ) / ~  I 5n/2 [l,2("+2)/2 + 11 

Bent 2" -1 4m 2"/2 1 + 2"/2 2 ( .2"/4 1 
n /4 

No 2" -1  2m 2"/2 1 + 2n/2 , ~ m.2"'-' [1,2"/2 + 11 
Values tabulated correspond within each collection to the family having largest possible linear span 

Let R,,<( .), 1 I i ,  j I 2", denote the correlation func- 
tion associated with the ith and j t h  sequences in the 
family S :  

which f l ( t 2 )  = 0, i.e., 

z l=I{  t 2 , O  I t 2  I T-llfl( t2) = O }  1, (12) 

then the sum sequence s, ( t  + T) + sJ( t )  takes on the value 
0 a total of z1*(2" - 1) + ( T  - z,)(2"-' - 1) times and the 
value 1 a total of (T-  z1)~2"-' times. As a result, all 
possible nontrivial values of the correlation function 
R,, ,( .) are of the form 

N - 1  
R , , , ( T )  = (-l)Sl(f+T)+S~(f) , O I T I N - 1 .  (4) 

t - 0  

Theorem I :  

R, , , (T )  E { -2"-1 , -1 ,2"-1} ,  

vi, j 3 T 7  I s i ?  j~ 2", 0 I 7 N - 1 ,  ( 5 )  R , ,  J ( ~ > = z 1 . ( 2 m - ~ ) + ( ~ - z 1 ) ( 2 m ~ 1 _ 1 ) - ( T -  z1).2m-1 

(13) 
provided either i # j or T f 0. 

expansion of t ,  0 I t I N - 1; i.e., 

= 2". (z1- 1) - 1 .  
Proof: Let t ,  and t ,  be the digits in the base-T 

- '' ( 6 )  

Thus the theorem is proved if we can show that z1 can 
only take on the values 0, 1, or 2 as y, and y, vary over 
GF(2") and T varies over the range 0 to N - 1 (disregard- 
ing, of course, the case y, = y,, T = 0). 

To show this, we first note that 

* 2  t = T*t ,  + t 2 ,  0 I t l I  2" -2 ,  

Noting that 

(7) 

(8) 

tr; ( ~ ~ ( T I I  + t 2 ) )  = (y2Tt1. tr; ( ( y 2 1 2 )  

and that fl ( t + T ) = 2rT.fl ( t ) , 0 I t I N - 1. (14) 

7 Consequently, if z2 denotes the number of zeroes of the aT2r, = a2Tt, 

one can express each sequence s, ( t ) ,  1 5 i I 2", in the 
form must be that: 

function fi( t )  as t varies Over the range 0 to N - 1, then it 

z2 
z1 = - 

2"-1 
Next, define As a result, we have that 

\ I  

and note that as gcd(r,2" - 1) =1, 
+ [tr; (a2 ' )+  y j .aT t ]  ', o I t I N - I .  (11) 

If for a fixed value of t 2 ,  0 I t ,  I T - 1, f l ( t 2 )  # 0, then 
as a function of t ,  the sequence s i ( t  + T)+ s,(t) is (from 
(10)) simply an m-sequence of length 2" - 1 whose phase 
is determined by the value of f l ( t 2 ) .  Of course, when 
f , ( t , )  = 0 one obtains a string of 2" - 1 zeroes as t ,  varies 
over the range 0 to 2" - 2. 

From the balance properties of m-sequences [Id], it then 
follows that if zl denotes the number of values of t ,  for 

f2 ( t ) = 0 CJ fl( t ) = 0, 0 I t I N - 1. (17) 

Thus it suffices to count the number of zeroes of the 
function f2(-) (note that by th s  we have established that a 
family of No sequences possesses the same correlation 
properties as a small set of Kasami sequences [3], [lo], [ll]; 
however, we continue for the sake of completeness). 

Let x = a' so that x ranges over all the nonzero ele- 
ments of GF(2") as t ranges over 0 to N-1. Abusing 
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notation, we write ison of the relevant properties of some of the better-known 
pseudorandom sequence families available to the user, 
including the family introduced here. 

= x'(1+ 2 7 )  + x2m+1(l+ a'T)'" + x2-.+1( y,aTT+ y , )  

= x2(y ' (1+ a'T)'-. + y(y,aTT+ y,)  + ( 1  +a ' , ) } ,  111. LINEAR SPAN 

(18) The linear span of a typical sequence s ( t )  E S 

where y = x2- . - l .  Here one must distinguish between two s ( t >  = t ry (  [ tr ;(a ' ' )+y.a~. '] ' )  (20) 

may be determined by expanding the sequence as a poly- 
nomial in a' and counting the number of powers of a' 
occurring in this expansion that have nonzero coefficients 
[13] .  As before, for simplicity let x = a' and use s(x) to 

R , , , ( O ) = - 2 " - 1 ,  f o r i z j .  (19) s ( x )  = tr? ([tr: (x') + y.x2*+'] ' ) .  (21 )  

cases: 

Case 1: r = 0,  y ,  # y,. 
Here f2(x) = x 2 y ( y ,  + y,) and thus f2(x) does not van- 

ish for any nonzero value of x, i.e., z1 = z 2  = 0. Note that 
by (13) this implies denote 

Case 2: r # 0. 
In this case, f 2 ( x )  vanishes if and only if the quadratic 

in y in (18) vanishes. Since the coefficients of the quadratic 
lie in GF(2"), the quadratic has 0, 1, or 2 roots over 
GF(2").  In the first case there are no values of t ,  for which 
f2( t 2 )  = 0, i.e., z1 = z 2  = 0. In the other case, z2 = 0, 2" - 1 
or 2(2"' -l), depending upon whether the roots of the 
quadratic in y can be expressed as (2" - 1)th powers in the 
field. Thus, in either case, z1 = 0, 1, or 2, and we are done. 

Q.E.D. 

By arguing as in the proof of the preceding theorem, one 
can establish that for any sequence s , ( t ) ,  the sum 
Cy'=;'( - l ) s i ( r )  equals - 1 (when y j  = 0), and either - 2"' - 1 
or 2"-1 otherwise. Thus the imbalance (number of 
ones-number of zeroes) in these sequences ranges in mag- 
nitude between 1 and 2" + 1. 

To link the family' of No sequences with other well- 
known sequence sets, set y,  = 0 in (3) to obtain the GMW 
sequence contained within the family and set r =1 to 
obtain the small set of Kasami sequences. These relation- 
ships are summarized in Fig. 1. Table I presents a compar- 

Then 

s ( x )  = try [ x2' [1  + y ' y  + y'] '1 
m - 1  

= c x".2'[1+ y - y  + y ' ]  ' ", (22) 
J = o  

where y = ~ ' * ~ ~ .  By reducing exponents of x modulo 
(2" - l), it is easy to see that the exponents of x occurring 
in the expansion of any two terms x""~ [1+ y . y  + y']' ''I 

and X" "* [1+ y . y  + y2]r'2'2 present in the sum in (22) 
are disjointed, and hence the linear span of the sequence 
s ( t )  is precisely rn times the number of distinct powers of 
x (having nonzero coefficients) in the expansion of the 
term 

g ( d  [ I+  Y'Y + Y'I '. (23 )  
Consider the binary (0, l )  expansion of the integer r .  

Let R be the total number of runs occurring withn t h s  
expansion and let L, be the length of the j t h  run, 1 I j I 
R,  with the runs being numbered consecutively from the 
least to the most significant bit. Thus r may be expressed 
in the form 

R L, -1 

(24) is contained 
No Sequences 

where e, denotes the lowest exponent of 2 associated with 
the j t h  run. Note that by definition, 

of subsequences of subsequences e J + l ' e J +  L,+l,  j = 1 , 2 ; . . ,  R - 1 .  (25 )  Decimation Decimation 

yields yields 
Using (24),  one can rewrite g ( y )  in the form I I 

R 

is contained 
Kasami Sequences where ri = = 2 L ~  - 1, 1 I j I R .  in the 

Fig. 1. Relating No sequences to other well-known pseudorandom se- Define 

2For the sake of brevity, we shall at times refer to the collection of No and note that when considered as a polynomia1 in y ,  each 
nonzero exponent of y (that can possibly have a nonzero families of sequences as simply a family of No sequences. 
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coefficient) in g,(y) is a multiple of 2'1 that lies between 
2 " ~  and 2 " ~ ~ l - r ~ .  

As 
R 

g ( y )  = n gJ(y) ,  (28) 
/ = I  

the exponents of y that can possibly occur (with nonzero 
coefficients) in the expansion of g( y )  as a polynomial in y 
are, by the preceding, of the form 

R 

a =  a,, 
j = l  

where 2'1 I a, < 2'~+l.r, < 2'1.1 and ~ ' J Iu , .  
Therefore two such exponents, u=C~=,a ,  and b =  

C;=,b,, can only be equal if and only if a, = b,, j = 

1,2; . ., R. Thus one can count the number M of distinct 
exponents occurring in the expansion of g( y ) by counting 
the corresponding number M ,  for each polynomial g,(y) 
and multiplying; i.e., 

R 

M =  n M,. 
/ = I  

At this point we consider two cases separately. 

Case I: y = 0. 
Let z = y2". Then 

g,(z) = [1+ z2]'/ 

5 
= z2k. 

k = O  

Hence M, = r, + 1 and 
R 

M = n 2 4  = 2'%14 = 2" 
/ = I  

where w is the Hamming weight of the binary representa- 
tion of r .  Thus the linear span of the sequence s ( t )  in this 
case equals m-2w, a result that is not surprising because, in 
this case, s ( t )  is in fact a GMW sequence [4]. 

Case 2: y 210. 
As before, let z = y2<'. Set q = yZeJ .  Then 

g,(z) = [1+qz+z2]5  (33) 
and by factoring the quadratic (whose coefficients lie in 
GF(2")) over GF(2"), one can write 

gJz) = (z+S) ' l (z+S- ' ) ' l  

- 6 5 - k z k  S'-'lz' , (34) 
- ( k : O  ) (  ) 

which after some work reduces to 

5 

k = O  

(6-2) + ' + 1 [ 6 - 2 + 1  ] g,(z) = a k z k -  

Let P, be the number of values of k ,  15 k r,, such 
that tik = 1. Then the number of coefficients in g,(z) that 
vanish equals 2 P,. Therefore, 

MJ = 2rJ + 1 - 2 P, 

- -2LJ+1-1-2PJ. (36) 

Clearly the quantity PJ is a function of the parameter y ,  
can 

Lemma 1: There exists a 1-1 correspondence between 

and some additional information is required before 
be determined. 

quadratic equations of the form 

y 2  + y,y + I =  0 ,  11 i I 2", (37) 

where the y, ranges over all of GF(2'") as i ranges over the 
range 1 to 2" and elements of the set 

Q = (1, a 2 m + l  a2(2"+1) . . . (2m-1-1)(2m+1) a2"-1 
9 , ,a 3 , 

1. (38) a2(2m-1) . . . (y2"-'(2m- 1) 
9 ,  

The correspondence is obtained by associating each 
equation with its root. 

Proof: Consider an equation 

y 2  + y . y  + 1 = 0 ,  y E GF(2"'). (39) 

Clearly the roots are of the form { 6, S - ' }  for some 6. If 
the quadratic is reducible over GF(2"), then one of its two 
roots is contained in Q. If the quadratic is irreducible, then 
its roots have order dividing 2" +1 as 6-' = S2m (by 
conjugacy) for a root 6. Thus, once again, one of the two 
roots is contained in Q. The proof is then completed by 
noting that, conversely, for every element 6 in Q the 
polynomial ( y  - S ) ( y  - 8-') has coefficients in GF(2m). 

Q.E.D. 

Returning to the problem of estimating the linear span 
of the sequence s ( t )  in (20), let us consider first the case 
when y is such that S = 1s a I 2"-' -1, is a 
root of the quadratic y 2  + y . y  + 1 = 0 (the quadratic is 
reducible in this case). Note that as y # 0, 6 # 1. Then 

Pi = I ( k ,  1 I k I 2 C J ' k  = 1 ) 1. (40) 

But 82eJ"k =1 * (y2eJ,ok(2m+1) =1, i.e., ask  = 0 modulo (2" 
- 1) * k = 0 modulo ((2" - l)/g), where g = gcd( a, 2" - 
1). Consequently, 

Thus the sequence s ( t )  has the linear span lSpm given by 

To compare the preceding value of the linear span lSpm 
with that for a GMW sequence, note that since a I 2"-' 
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TABLE I1 
LINEAR SPANSu OF FAMILIES OF NO SEQUENCES OF PERIOD 2" - 1, n 5 14 

n IS1 r Linear Span (Frequency) 

6 8 3 W ) ,  W ) ,  2 W )  
8 16 7 3W), 44(1), 52(2), 60(12) 

10 32 3 20(1), 25(1), 35(30) 
5 20(1), 45(31) 
I 40(1), 55(1), 75(30) 

11 40(1), 75(1), 105(30) 
15 80(1), 105(1), 145(5), 155(25) 

12 64 5 24(1), 54(63) 
11,13 48(1), 90(1), 126(62) 

23 96(1), 198(1), 234(5), 270(57) 
31 

539 28(1), 63(127) 

192(1), 258(1), 306(2), 330(3), 342(3), 354(6), 366(6), 378(42) 
14 128 3 28(1), 35(1), 49(126) 

7 56(1), 77(1), lOS(126) 
11,13,19 56(1), 105(1), 147(126) 

21 56(1), 189(127) 
15 112(1), 147(1), 217(126) 

23,29 112(1), 231(1), 315(126) 
27 112(1), 175(1), 343(126) 
43 112(1), 315(1), 441(126) 
31 224(1), 301(1), 441(126) 
47 224(1), 441(1), 651(126) 
55 224(1), 385(1), 735(126) 
63 448(1), 595(1), 875(21), 889(105) 

"The smallest value in each row corresponds to the linear span of a GMW sequence. 

- 1, g I 2"-' - 1 + ((2" - l)/g) > 2, and therefore 

R 

Thus the linear span of each such sequence s ( t )  equals or 
exceeds that of the GMW sequence contained within the 
family. 

1 I a I 
2"-' is a root of the quadratic y 2  + y - y  + 1 = 0, the linear 
span can in the same manner be shown to equal 

For the case when y is such that 6 = 

where now g = gcd( a, 2" + 1). 
In t h s  case also Ispm exceeds the linear span of the 

corresponding GMW sequence. These results are summa- 
rized next using the notation introduced in this section. 

Theorem 2: Let S be the family of 2" sequences de- 
fined in (2). For each element y, in GF(2"), y,#O, set 
c ,  = -1 or +1, depending upon whether or not the 
quadratic y 2  + y, 0 y + 1 = 0 is reducible over GF(2"). Also, 
for each y, let 6, be the root of the quadratic y 2  + y;y + 1 
= 0 lying in Q (see (38)). Let the integer a, be determined 
from either 

or 
6, = aai(2m-'), 

and set g, = gcd( a,, 2" + E,). Then the linear span fSpm ( i )  
of the ith sequence s , ( t )  in S is given by 

when E, = + 1 

When y, = 0, the linear span fSpm (i) is given by 

fSpm(i) =m.2". (46) 

Table 11 shows the linear span distribution for all possi- 
ble families of No sequences of period I 214 - 1 = 16 383. 

IV. IMPLEMENTATION 

For the purposes of implementation, we note that the 
expression for a No sequence can be rewritten in the form 

SI( t )  = tr;.( [tr; ( a ' )  + a-('+q r } ,  (47) 

where we have used a property of the trace function and 
rewritten the parameter y identifying the particular se- 
quence within the family in the form 

y = 2 . 2 ,  0 I z I 2 "  -2. (48) 
We set z = - 00 for the case y = 0. 

The sequence tr; (a')  that appears within brackets may 
be regarded as a (generalized) m-sequence [15, p. 3151 over 
GF(2") satisfying a linear recursion of degree 2. Let 
m,(z) be the minimum (primitive) polynomial of a over 
GF(2"). Then m,(x) is of the form 

m,(x) = x2  + & e x  + & (49) 
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I 1 
Fig. 2.  No sequence generator in Galois configuration 

for some P1 and /I2 in GF(2m). Let /? = aT, T =  2" + 1. 
Then P is a primitive element of GF(2m) and 
(1, P,  P2;  . -, P m - ' } ,  a basis for GF(2m) over GF(2). 
Clearly any element in GF(2m) can be expressed as an 
m-dimensional vector over GF(2). Using (49), as discussed 
in the previous section, we can realize the generalized 
m-sequence generator in the Galois configuration [ 151 (Fig. 
2). Each block in the shift register contains m regsters and 
each arrow (except the final arrow at the output) repre- 
sents the flow of information along m binary channels. Let 
P' be the output of the second shift regster block in Fig. 
2. For every value of t the output can be expressed in 
terms of the preceding polynomial basis for GF(2m) as 
follows: 

m - 1  

P ' =  c v , * P ' ,  (50) 
r = O  

with the coefficients v, (which are functions of t )  lying in 
GF(2). In order to determine the input to the first two 
shift register stages, we need to find the (Boolean) coeffi- 
cient functions f i (vo ,  vl, a ,  v , - ~ )  and g,(vo, v l , .  . a ,  vm- 1 )  

satisfying the following equations: 

m -1 

P**P'=  c fi(vo,vl,.-.,vm-l).Pf (51) 

P1 .P' = c g ,  ( vo > (52) 

1=0 

m - 1  

. . 9 Urn - 1) - P I .  

r = O  

Clearly, f,(vo, vl;. ., v , - ~ )  is fed into location a, in the 
first shift register block and the sum of gl(vo,  vl; a ,  vm-l), 
and the i output of the first shift register (corresponding to 
location a, )  is fed into the shift register b, in the second 
shift register block. We need another m shift registers to 
generate p('+') as a sequence of m-dimensional vectors 
over GF(2) (these registers simply constitute a binary m- 
sequence generator). The nonlinear function ( can be 
realized by implementing the logic needed to generate the 
coefficient functions hl. ,(v0,  v1; + 7  in the following 

equation: 

m - 1  

= c hl,,(vo,vl,...,V,-l).Pl. (53) 
i = O  

Finally, with regard to the nonlinear function (.)', we need 
calculate only one of the m coefficient functions 
h *, , ( yo, v l , .  . . , vm - in the equation 

m -1 

r = O  

because the function tr;"( .) corresponds precisely to a 
choice of one of these coefficients. By changing the initial 
conditions of shift registers of fit+' for a given (fixed) set 
of initial conditions for the first and second shft  register 
blocks (this corresponds to changing the value z ) ,  we 
accomplish the switch from one No sequence to another 
without any change in the circuitry. Thus a circuit that can 
generate any one of the No sequences within a family can 
be implemented using 3 . m  shift registers and some addi- 
tional logic. 

V. AN EXAMPLE 

As an example, consider the case n = 6 ,  r = 3 when 
N = 63, m = 3, and T = 9. The corresponding family S of 
No sequences (each sequence has period 63) is then given 

S =  { , z ( t ) l t=-00 ,0 ,1 ,2 ,3 ,4 ,5 ,6} ,  ( 5 5 )  
by 

where 

s , ( t )  = tr:([tr,6(ar)+a4'9-(r+')]3] (56) 

and a is a primitive element of GF(26) having minimum 
polynomial x6 + x5 + x 2  + x + 1. The generation of a 
GMW sequence using the same primitive element is dis- 
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TABLE I11 
AN EXAMPLE No FAMILY OF PERIOD N = 63 

Linear 
No Sequences Span 

s _ , ( t )  OOOOO10100100111010111010010111o0o11001111110010010111001110100 12 

s,(O lo001 11OOOOO1011o001OOOOOO11100111011101 lo001 10011m10101101 21 
$?( I )  1101o0o11111100101OOOOOO110110100101001OOOOOOOO1o0o110111 loo01 1 21 
S 3 ( t )  011110111011010111110101111101011o0o11~1111o0o1OOOOO101111000 21 
S4(f) 10110011OOOOO110101010101OOOOO11001oooo101o0o101111100101001110 21 
s,(t) 011 11100110011001010011010011100110101111111111 100101 lOOOOOO110 21 
s,(t) 01 1010101 101 10101001 11 11011o0o101110101o0o10011011111111001o001 21 

S O ( t )  1oooo1o0o111OOOOO110101101~1010010110010011011001001010011011 15 

cussed in [15, Example 5.121. The eight sequences belong- 
ing to the family are listed in Table 111. 

For this family, the correlation function (from Theo- 
rem 1) 

R , . , ( 4  , i , j E { - - , 0 , 1 ; . . , 6 } , 0 ( 7 I 6 2 ,  (57 )  

takes on values in the set { - 1, - 9,7} whenever either 
i f j o r T Z 0 .  

With reference to the expansion for r given in (24), we 
have in this example R = 1 and L ,  = 2. Using (45) and (46) 
the linear spans of the sequences belonging to the family S 
can be shown to lie in the set {12,15,21} (see Table 111). 

A binary implementation of the generator for a sequence 
belonging to the family is shown in Fig. 3. Here, 

p = a9 ( 5 8 )  

and is a primitive element of GF(23). The minimum poly- 
nomials m , ( x )  and m s ( x )  of a and p over GF(23) and 
GF(2), respectively, turn out to be 

m , ( x )  = x 2  + p6.x + p (59 )  
and 

m a ( x )  = x3  + x +I .  (60) 

- 
Fig. 3. Generation of No sequence of period 63. 

Choosing { 1, p, p 2 }  as a basis for GF(z3) over GF(2), the 
elements p' can be expressed in the form 

where the coefficients v, are functions of t and lie in {O,l} .  
The coefficient functions { f,, g,li = 0,1,2} are easily deter- 

mined by noting, using (60), that 

p-p' = p.  ( v o * l  + v , *p  + .,.p') 
= v 2 - l +  (vo + v 2 ) - p  + v1$2 

p6.p' = p 6 .  ( v o - l +  v l . p  + v 2 . p 2 )  

= ( vo + vl). 1 + v 2 . p  + io.@*. 

(62) 

(63) 
The nonlinear functions { h, , , ,  h2,,1i = 0,1,2} correspond- 
ing to raising to the fourth and third powers ( . )4 and ( . ) 3  

are found just as easily from (60): 

( = ( V0' 1 + v, -p + v2.p')4 
= vo.l + ( v l +  .,)+I + v 1 - p 2  

( p ( t + ~ ) ) ~  = ( vo-i + .,.p + v2.p2)3 

(64) 

= ( V ~ + V , + V ~ + V ~ - Y ~ ) * ~ +  * e * .  (65) 

As observed earlier, it is sufficient for the purpose of 
implementation to determine only one coefficient function 
h2,0. Finally, different sequences within the family are 
obtained by simply changing the initial contents of shift 
register ( u0, U,, u 2 )  for a fixed set of initial contents for the 
other shift registers. 

VI.  NUMBER OF DISTINCT FAMILIES AVAILABLE 

Complete specification of a family of No sequences 
requires that, in addition to the length of each sequence 
within the family, the primitive element a and the integer r 
(see ( 3 ) )  be given also. 

Our interest in this section is to determine the number 
of distinct families available when only the length N of the 
sequences is specified. 

Accordingly we modify our earlier notation and rewrite: 

S ( a , r )  = ( t ry (  [ t r~ (a2r )+y .ru"]r ) lyEGF(2m)) .  

(66) 

For our purposes, we define two families to be distinct if 
and only if no sequence belonging to one family is a cyclic 
shift of a sequence that is an element of a second family. 

Lemma 2, which follows, identifies necessary and suffi- 
cient conditions under which, with this definition, two 
families are distinct. 

Lemma 2: Let n ,  N ,  m,  T, and S( . ,  .) be as defined 
earlier. Let a, and a2 be primitive elements of GF(2") and 
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let rl and r,, 1 I r,, r, I 2" - 2 be integers relatively prime 
to 2" - 1. Then S(a, ,  r ,)  and S ( a 2 ,  r,) are distinct unless 
for some integers k and I ,  0 I k I n -1, 0 I 1 I m - 1, 
a, = a:k, and rl = 2'.r,, in which case 

S(a1, r , )  = S(% r2). (67) 

Proof: Let sl( t )  and s2( t )  be elements of S( a,, r,) and 

(68) 

S(  az, r,), respectively, given by 

sl( t )  = try ( [ t r i  (a:') + yl-a,T'] ")  

s Z ( t )  = t r y (  [ t r i (a : ' )+y2 .aF]r2) ,  (69) 

in which y1 and y2 are elements of GF(2"),  not necessarily 
distinct. Assume 

and 

s , ( t )  = s , ( t  + 7 )  (70) 

for some cyclic shift 7 ,  0 I 7 I 2" - 2 .  Let t ,  and t ,  be the 
digits in the base-T expansion of t as before, i.e., 

0 I t ,  I 2" - 2 , O  I t ,  I 2". (71) t = Tet, + t,, 
Then upon expanding, (70) yields 

try ( a:rlTf1 [ tr; ( a : ' ~ )  + y,. a?] '' ] 
= try ( 4 r 2 ~ t 1  [ t r i  ( 'y : ( f2+7))  + y2. ( y ~ ( ' 2 + 7 )  I " ) .  (72) 

For a fixed value of t,, either sequence sl(t) or s2( t  + 7 )  

(when regarded as a sequence in the variable t,, 0 I t ,  I 2" 
- 2 )  is either the all-zero sequence or else a cyclic shift of 
an m-sequence of period 2" - 1, try (a:Trlrl), or 
try (atTr2'1), respectively. 

Clearly the two m-sequences must be the same (to 
within a cyclic shift), and we therefore obtain 

(73) aTrl = aTr2.2' 
2 

for some integer I ,  0 I 1 I m - 1. Let 

a, = a;. 

Then (73) may be rewritten as 
(74) 

r , = d . r 2 . 2 ' m o d ( 2 " - l ) .  (75) 

Using (75), a property of the trace function, and the fact 
that gcd( r,, 2" - 1) = 1, one can prove that (72) is possible 
if and only if 

[ tr; (a:'~) + yl- a?] = [ t r i  (a:( '~+~)) + y,. a;('2+~)], d 

O I t , r T - l .  (76) 

It is simple to verify that (76) is true for all t , ,  0 I 1, I 
2" - 2  if it is true for all values of t, specified in (76). 

Let x = a?. Then (76) may be rewritten in the form 

X 2 d [ ~ + ~ l . X 2 m - l + X ~ ( 2 m - l ) ] d  

The right side is a polynomial in x having three nonzero 
coefficients. Equality can hold in (77) if and only if the 
same is true for the left side. The number of powers of x 
having nonzero coefficients that appear in the expansion 
on the left side may be counted using precisely the same 
technique used in determining the linear span of the se- 
quence. It will then become apparent that the number of 
terms having a nonzero coefficient equals 3 if and only if d 
is power of 2, i.e., 

d = 2 k ,  somek, 0 1 k 1 n - 1 .  (78) 

Inserting (78) into (79, we obtain 

r , =  r , . 2 ' + k m o d ( 2 " - l )  (79) 

and we have thus established the necessary condition iden- 
tified in the Lemma 2. 

To prove sufficiency, note that when 

d = 2 k ,  and r ,=  2'-r2, 

we have 

sl(t> = t r y (  [ t r i ( a ? ' ) + y , . a , ~ ' ] ~ * )  

and 

which equals sl( t )  whenever 

2 m - k  
Yz = Y1. 

However, since the operation of raising an element of 
GF(2") to a power of 2 merely permutes the elements 
amongst themselves, it is clear that under the conditions 
stated in (80), 

qa,, 5 )  = Sb,, r2). 

Q.E.D. 
Thus S( a,, r , )  and S( a,, r,) are cyclically distinct when- 

1) 
2 )  

This proves the following. 

Theorem 3: For a given period N = 2" - 1, the number 
NNo of distinct No sequence families that can be con- 
structed equals 

ever at least one of the following conditions is violated: 

a2 is a conjugate of a,; 
rl and r2 belong to the same cyclotomic coset of 
GF(2").  

cp(2"-1) cp(2"-1) 
9 m n "0 = (84) 

where cp( .) is Euler's phi function and m = n / 2 .  
Table IV contains a listing of the values of N N o  for 

Authorized licensed use limited to: Seoul National University. Downloaded on August 17, 2009 at 02:53 from IEEE Xplore.  Restrictions apply. 



NO AND KUMAR: A NEW FAMILY OF BINARY PSEUDORANDOM SEQUENCES 

TABLE IV 
NUMBER OF DISTINCT FAMILIES OF N o  SEQUENCES OF PERIOD 2“ - 1 

n Period NNn 

6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 

63 
255 

1023 
4095 

16383 
65 535 

262 143 
1048 575 
4 194 303 

16777215 
67 108 863 

12 
32 

360 
864 

13608 
32768 

373 248 
1440000 

21 125632 
39813120 

1083537000 
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