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Abstract—In this correspondence, the linear complexity over of
Lempel–Cohn–Eastman (LCE) sequences of period 1 for an odd
prime is determined. For = 3 5 and 7, the exact closed-form
expressions for the linear complexity over of LCE sequences of period

1 are derived. Further, the trace representations for LCE sequences
of period 1 for = 3 and 5 are found by computing the values of
all Fourier coefficients in for the sequences.

Index Terms—Lempel–Cohn–Eastman (LCE) sequences, linear com-
plexity, sequences.

I. INTRODUCTION

Among properties of periodic sequences [1], [8], the linear com-
plexity [5], [6], [20], [24], balance, and correlation properties are
important for the application of stream ciphers and code-division
multiple-access (CDMA) communication systems [22]. A binary
sequence is said to have the balance property if the difference between
the number of1’s and 0’s in a period of the sequence is at most
one. Lets(t) be a binary sequence of periodn. The autocorrelation
function of a binary sequence of periodn is defined as

R(� ) =

n�1

t=0

(�1)s(t)+s(t+�):

A sequence is defined to have ideal autocorrelation if

R(�) =
n; if � = 0 mod n

�1; otherwise.

A lot of attention [7], [8], [17], [19] has been devoted to binary se-
quences of period2m�1with ideal autocorrelation. A binary sequence
of even periodn with the balance property is said to have optimal au-
tocorrelation if

R(�) =
0 or�4; if n = 0 mod 4

2 or�2; if n = 2 mod 4.

Let p be a prime andm be a positive integer. LetFp be the finite
field with pm elements andF �p = Fp nf0g. Let S be a nonempty
subset ofF �p and� a primitive element ofFp . Then the character-
istic sequence of periodpm � 1 of the setS is defined as [9]

s(t) =
1; if �t 2 S

0; otherwise.
(1)

Let S be a set defined as [9], [12]

S = �
2i+1 � 1 0 � i �

pm � 1

2
� 1

where p is an odd prime and� is a primitive element ofFp .
Then, the characteristic sequence of this setS is referred to as a
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Lempel–Cohn–Eastman (LCE) sequence[12], [21], which is a0-1
binary sequence of periodpm � 1, i.e., of even length. It has been
shown that LCE sequences have the optimal autocorrelation and
balance property. Noet al.[15] also introduced binary sequences of
period pm � 1 with optimal autocorrelation property by using the
image of the polynomial(z + 1)d + azd + b overFp , which turned
out to be LCE sequences.

Let �(x) denote the quadratic character ofx defined by

�(x) =

+1; if x is a quadratic residue
0; if x = 0

�1; if x is a quadratic nonresidue.
(2)

Helleseth and Yang [9] described LCE sequences by using the indi-
cator function and the quadratic character given by

s(t) =
1

2
(1� I(�t + 1)� �(�t + 1)) (3)

where the indicator functionI(x) = 1 if x = 0 andI(x) = 0 other-
wise.

Helleseth and Yang [9] studied the linear complexity overF2 of LCE
sequences. Even though LCE sequences are binary sequences, they are
constructed based on the finite fieldFp and, thus, it is more natural
to find the linear complexity overFp for LCE sequences. The trace
representation of sequences is useful for implementing the generator of
sequences and analyzing their properties [6], [11], [18]. Thus, it is of
great interest to represent LCE sequences by using the trace functions.

In this correspondence, the linear complexity overFp of LCE se-
quences of periodpm � 1 for an odd primep is determined. Forp =
3; 5; and7; the exact closed-form expressions for the linear complexity
overFp of LCE sequences of periodpm � 1 are derived. Further, the
trace representations for LCE sequences of periodpm � 1 for p = 3
and5 are found by computing the values of all Fourier coefficients in
Fp for the sequences.

II. L INEAR COMPLEXITY OVER Fp OF LCE SEQUENCES OFPERIOD

pm � 1

It is well known that the Fourier transform of ap-ary sequences(t)
of periodn = pm � 1 in the finite fieldFp is given as

Ai =
1

n

n�1

t=0

s(t)��it (4)

and its inverse Fourier transform as

s(t) =

n�1

i=0

Ai�
it (5)

where� is a primitive element ofFp andAi 2 Fp .
Using the Fourier transform of the sequences, we first find an ex-

pression forA�i, 0 � i � n�1 of LCE sequences as in the following
lemma.

Lemma 1: Let thep-adic expansion ofi be given as

i =

m�1

a=0

iap
a (6)

where0 � ia � p � 1. Then,A�i of the LCE sequences defined in
(3) is given as

(p�2)A�i = �(�1)i+(�1)i� �

m�1

a=0

ia

p� 1

2

mod p: (7)
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Proof: Using the Fourier transform of the sequences in (4), the
relation forA

�i can be derived as follows:

2nA
�i =2

n�1

t=0

s(t)�it

=

n�1

t=0

(1� I(�t + 1)� �(�t + 1))�it

=

n�1

t=0

�
it � (�1)i �

n�1

t=0

�(�t + 1)�it: (8)

For i = 0, (8) can be given as

2nA0 = p
m � 1� 1�

n

t=0

�(�t + 1)

= p
m � 2�

n

t=0

�(�t + 1) + �(1) � �(1)

= p
m � 2� 0 + 1

=�1 mod p:

Thus, we have proved that the lemma holds fori = 0.
For nonzeroi, (8) can be rewritten as

2nA
�i =�(�1)i �

x2F

�(x+ 1)xi

=�(�1)i �
y2F

�(y)(y � 1)i: (9)

Asz varies overFp , z2 takes all the quadratic residues inFp exactly
twice and the zero element once. Similarly,�z2 takes all the quadratic
nonresidues inFp as values exactly twice and the zero element once.
It is clear that all the quadratic residues and nonresidues together with
the element0 cover all elements inFp .

Using the definition of the quadratic character�(�) in (2), (9) is mod-
ified as

2nA�i =�(�1)i

�
1

2
z2F

[�(z2)(z2 � 1)i + �(�z2)(�z2 � 1)i]

=�(�1)i �
1

2
z2F

[(z2 � 1)i � (�z2 � 1)i]

=�(�1)i �
1

2

i

l=0

i

l
(�1)i�l(1� �

l)
z2F

z
2l
:

The inner sum only contributes whenl = p �1
2

, in this case�l =
�1. Note that whenl = 0 then1� �l = 0. Therefore, we obtain

2nA�i = �(�1)i � (pm � 1)
i

pm � 1

2

(�1)i� :

Reducing modulop for both sides, we have the relation

(p� 2)A�i = �(�1)i +
i

pm � 1

2

(�1)i� mod p: (10)

From the result of Lucas [2] given by

i

pm � 1

2

=

m�1

a=0

ia

p� 1

2

mod p

(10) reduces to (7).

It is already known from Blahut’s theorem [3], [4] that the linear
complexity of periodic sequences can be determined by computing the

Hamming weight of their Fourier transform. Thus, we need to deter-
mine the cardinality of the setfi jA�i 6= 0; 0 � i � n � 1g, which
is calculated from (7). We have proved the following result.

Theorem 2: Let C be the number of integersi, 0 � i � pm � 2
satisfying the relation

m�1

a=0

ia

p� 1

2

= (�1) mod p (11)

where theia ’s are coefficients in thep-adic expansion
a
iap

a of i.
Then the linear complexity overFp of the LCE sequence of period
n = pm � 1 defined in (3) equals

Lp = n� C: (12)

To demonstrate this technique, we will calculate the linear com-
plexity overFp of the LCE sequence of periodn = pm � 1 in the
case ofp = 3; 5; and7. But it is not easy to find the linear complexity
overFp of LCE sequences forp > 7.

A. Linear Complexity OverF3 of LCE Sequences of Period3m � 1

Using the result of Theorem 2, the linear complexity overF3 of LCE
sequences of periodn = 3m � 1 is derived in the following theorem.

Theorem 3: The linear complexity overF3 of the LCE sequence of
periodn = 3m � 1 is given as

L3 = 3m � 2m�1:

Proof: For p = 3, it is clear that

0

1
= 0;

1

1
= 1;

2

1
= 2

and

3m � 1

2
=

even; if m = even
odd; if m = odd.

Then (11) is rewritten as
m�1

a=0

ia = (�1)m mod 3: (13)

Thus, all theia ’s in the 3-adic expansion ofi should be1 or 2.
The number of solutions of this system is2m�1 since selecting
i0; i1; . . . ; im�2 uniquely determinesim�1. However, even though
it satisfies (13), the solution corresponding to

i0 = i1 = � � � = im�2 = 2

must be excluded since it corresponds toi = 3m�1. We conclude that
C = 2m�1�1 and the linear complexity overF3 of the LCE sequence
of period3m � 1 equals

L3 = 3m � 2m�1:

B. Linear Complexity OverF5 of LCE Sequences of Period5m � 1

In this case, the linear complexity overF5 of LCE sequences of pe-
riod 5m � 1 is derived by counting nonzero Fourier coefficients of the
sequences as in the following theorem.

Theorem 4: The linear complexity overF5 of the LCE sequence of
periodn = 5m � 1 is given as

L5 = 5m �

b c

j=0

m

4j
� 2m�4j

wherebdc is the largest integer less than or equal tod.
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Proof: Since5 �1

2
is an even integer for any integerm, (11) for

p = 5 can be rewritten as

m�1

a=0

ia

2
= 1 mod 5 (14)

where theia ’s are coefficients in the5-adic expansion
a
ia5

a of i,
0 � i � 5m � 2, andia 2 F5.

It can be easily derived that

0

2
=0;

1

2
=0;

2

2
=1;

3

2
=3;

4

2
=1 mod 5:

In order to satisfy (14), all theia’s are larger than or equal to2 for
0 � a � m � 1 and the number of occurrencesia = 3 in the5-adic
expansion ofi should be a multiple of4 because the order of element
3 in F5 is 4, that is,34 = 1 mod 5. That is,ia = 3 occurs4j times
and ia = 2 or 4 occursm � 4j times in the5-adic expansion ofi.
For 0 � i � 5m � 2, the number of integersi satisfying (14) can be
counted as

C =

b c

j=0

m

4j
� 2m�4j � 1

wherei = 5m � 1 = (4; 4; 4; . . . ; 4) is excluded even though the
number of occurrencesia = 3 in the5-adic expansion ofi is0 mod 4,
becausei > 5m � 2.

Therefore, the linear complexity overF5 of the LCE sequence of
period5m � 1 is given as

L5 = 5m � 1� C = 5m �

b c

j=0

m

4j
� 2m�4j

:

C. Linear Complexity OverF7 of LCE Sequences of Period7m � 1

Similarly to the previous two cases ofp = 3 and5, the linear com-
plexity overF7 of the LCE sequence of period7m � 1 is derived by
counting nonzero Fourier coefficients of the sequences as in the fol-
lowing theorem.

Theorem 5: The linear complexity overF7 of the LCE sequence of
periodn = 7m � 1 is given as

L7 = 7m �

1

i=0

2

j=0

b c

u=0

b c

v=0

�

b c

w=0

m

2u+ i; 3v + j; 6w + k; D

wherebdc is the largest integer less than or equal tod andD = m �
2u � i � 3v � j � 6w � k andk; 0 � k � 5 is a positive integer
satisfying

3i+ 4j + k =
0 mod 6; if m is even
3 mod 6; if m is odd.

Proof: Using the relation

7m � 1

2
=

even; if m is even
odd; if m is odd

(15)

(11) for p = 7 can be expressed as

m�1

a=0

ia

3
=

i0

3
�
i1

3
� � �

im�1

3
= (�1)m mod 7 (16)

whereia 2 F7. Using (16), the theorem can be proved in a similar
manner to that of the previous theorem.

III. T RACE REPRESENTATION OFLCE SEQUENCES OFPERIODpm � 1

In this section, the trace representation of LCE sequences of period
pm � 1 for p = 3 and5 is derived by using the trace functions from
Fp toFp, wherekjm, even though they are binary sequences. For our
sequences, theAi ’s in (5) are inFp. If the Fourier coefficientsAi ’s
for all elements in a coset corresponding to the element�i have the
same value, then the summation of all elements in the coset makes the
trace functionAi � tr(�

it). Further, ifAi ’s have the same values for
all elements within the same cosets ofFp , (5) can be expressed as a
linear combination of the trace functions overFp given by

s(t) =
a2L

Aa � tr
k
1 (�at) (17)

whereL is a set of coset leaders for the set of cyclotomic cosets modulo
pm � 1, and for eacha 2 L, Fp is the smallest subfield ofFp
containing�a. Thus, it is enough to find the Fourier coefficientsAa ’s
for all coset leaders for the set of cyclotomic cosets modulopm � 1
if Ai ’s have the same values for all elements within the same coset.
Let (i0; i1; i2; . . . ; im�1) be a vector corresponding to the coeffi-
cients in thep-adic expansion m�1

a=0
iap

a of i; 0 � i � pm � 2.
It is clear that all integers corresponding to the cyclic shift of vector
(i0; i1; i2; . . . ; im�1) belong to the same cyclotomic coset ofFp .

The trace representation of the sequences of periodpm�1 is derived
by computing all theAi coefficients,0 � i � pm � 2 in (7) for the
LCE sequences in (3).

A. Trace Representation of LCE Sequences of Period3m � 1

In order to find the trace representation of LCE sequences of pe-
riod 3m � 1, let � be a primitive element of the finite fieldF3 . Let
trk
1
(�at) denote the trace function fromF

3
toF3, wherekajm and

F
3

is the smallest subfield ofF3 such that�a 2 F
3

.
We can classify the coset leaders for the set of cyclotomic cosets

modulo3m � 1 as follows.

Io1 : Set of odd coset leaders, where every digit in the3-adic ex-
pansion of a coset leader only takes the values1 or0; for example,
13 = 1 + 3 + 9 = (1; 1; 1).
Ie1 : Set of even coset leaders excluding the coset leader0, where
every digit in the3-adic expansion of coset leader only takes the
values1 or 0; for example,10 = 1 + 9 = (1; 0; 1).
Io: Set of odd coset leaders includingIo1 .
Ie: Set of even coset leaders includingIe1 .

Using the above notation, the trace representation of the LCE se-
quence of period3m � 1 is given in the following theorem.

Theorem 6: The trace representation of the LCE sequence of period
n = 3m � 1 is given by

s(t) =
a 2I nI

tr
k

1
(�a t) + 2 �

a 2I nI

tr
k

1
(�a t)

+ 2 �
a 2I

tr
k

1
(�a t):

Proof: For the LCE sequences of period3m� 1, the coefficients
Ai 2 F3, 0 � i � 3m � 2 defined in (7) can be rewritten as

A�i = �(�1)i + (�1)i�
m�1

a=0

ia

1
mod 3: (18)

Now, we have to find allAi ’s, 0 � i � 3m � 2 for the trace repre-
sentation of the LCE sequences of period3m � 1. Fori = 0, it is easy
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to find thatA0 = 2. Clearly, for oddm, 3 �1

2
= 1 mod 2 and for

evenm, 3 �1

2
= 0 mod 2. Then (18) can be modified as follows:

m�1

a=0

ia

1
=

m�1

a=0

ia = (A
�i + (�1)i)(�1)m�i mod 3: (19)

Note thatj = �i = n � i, 1 � j � 3m � 2, whereA0 for
j = i = 0 is already found. In the3-adic expansion ofi =

a
ia3

a

andj =
a
ja3

a, it is clear thatja = p� 1� ia = 2� ia for all a,
0 � a � m � 1.

Let us consider three cases as follows.

Case 1:A
�i = Aj = 0:

We have to find allj = n� i, 1 � j � 3m � 2 such thatA
�i = 0

in (19), which is rewritten as

a

ia = (�1)m mod 3: (20)

A necessary condition for (20) is that theia ’s in the3-adic expansion

a
ia3

a of i only take the values1 or 2, which means that theja ’s
only take the values0 or 1. Since2 = �1 mod 3 and22 = 1 mod 3,
the number of occurrencesia = 2, 0 � a � m � 1 in the 3-adic
expansion ofi satisfying (20) should be odd for oddm and even for
evenm and, thus, the number of occurrencesia = 1 should be even
for any integerm. Therefore, the number of occurrences of1 in the list
of ja; 0 � a � m� 1 should be even for any integerm and, thus,j is
even. Therefore, the coset leader ofj such thatAj = 0 belongs to the
setIe1 , wherej = 0 is excluded.

Case 2:A
�i = Aj = 1:

In this case, we have to find allj = n � i; 1 � j � 3m � 2 such
thatAj = 1 in (19). The following two subcases are considered.

i) Case ofi = even integer (i.e.,j = even integer):
We can rewrite (19) as

a

ia = �(�1)m mod 3 (21)

where allia ’s in the3-adic expansion ofi have to take the values1 or2.
The number of occurrencesia = 2 in the3-adic expansion ofi should
be odd for evenm and even for oddm, which means that the number
of occurrencesia = 1, 0 � a � m � 1 in the3-adic expansion ofi
should be odd for any integerm. Therefore, allja ’s only take the value
0 or1 and the number of occurrences ofja = 1 in the3-adic expansion
of j should be odd for any integerm, which means thatj is odd. This
contradicts the assumption thatj is an even integer. Therefore, there is
no even integerj which makesAj = 1.

ii) Case ofi = odd integer (i.e.,j = odd integer):
Equation (19) can be written as

a

ia = 0 mod 3: (22)

Equation (22) means that at least one ofia’s in the3-adic expansion
of i has to take the value0, which means that at least one ofja ’s in
the3-adic expansion ofj has to take the value2. Therefore, the coset
leader ofj belongs to the setIonIo1 .

Case 3:A
�i = Aj = 2:

In this case, allj = n � i, 1 � j � 3m � 2 such thatAj = 2
in (19), have to be determined, which can be easily found because we
have already found allj ’s such thatAj = 0 or1. Clearly, the remaining
sets of coset leaders for the set of cyclotomic cosets modulo3m � 1
areIenIe1 andIo1 .

For p = 3, the trace representation for LCE sequence of period80
is given in the following example, where the trace function is defined
in Theorem 6.

Example 7: Forn = 34 � 1 = 80 andm = 4, the LCE sequence
s(t) of period80 is obtained as

s(t) =0101100111001110000001111101110100111111

0010101100001000101001010110110010011000:

The coset leaders for the set of cyclotomic cosets modulo34 � 1 can
be classified as

I
o
1 = f1; 13g

I
e
1 = f4; 10; 40g

I
onIo1 = f5; 7; 11; 17; 23; 25; 41; 53g

I
enIe1 = f0; 2; 8; 14; 16; 20; 22; 26; 44; 50g:

Then the LCE sequences(t) of period80 can be expressed as a linear
combination of trace functions overF3 as follows:

s(t) = ftr41(�
5t) + tr41(�

7t) + tr41(�
11t) + tr41(�

17t)

+ tr41(�
23t) + tr41(�

25t) + tr41(�
41t) + tr41(�

53t)g

+ 2 � ftr11(�
0t) + tr41(�

2t) + tr41(�
8t) + tr41(�

14t)

+ tr41(�
16t) + tr21(�

20t) + tr41(�
22t) + tr41(�

26t)

+ tr41(�
44t) + tr21(�

50t)g+ 2 � ftr41(�
t) + tr41(�

13t)g

where� is a primitive element ofF3 .

B. Trace Representation of LCE Sequences of Period5m � 1

For the period5m � 1, the trace representation of LCE sequences
is derived similarly to the case of period3m � 1. Let� be a primitive
element of the finite fieldF5 . Lettrk

1
(�at) denote the trace function

fromF
5

toF5, wherekajm andF
5

is the smallest subfield ofF5
such that�a 2 F

5
.

The coset leaders for the set of cyclotomic cosets modulo5m � 1
can be classified as follows.

Io1 : Set of odd coset leaders, where every digit in the5-adic ex-
pansion of coset leader only takes the values0, 1, or 2 and the
number of occurrences of1 in the5-adic expansion of coset leader
is 1 mod 4.
Io3 : Set of odd coset leaders, where every digit in the5-adic ex-
pansion of coset leader only takes the values0, 1, or 2 and the
number of occurrences of1 in the5-adic expansion of coset leader
is 3 mod 4.
Ie0 : Set of even coset leaders excluding coset leader0, where every
digit in the5-adic expansion of coset leader only takes the values
0, 1, or2 and the number of occurrences of1 in the5-adic expan-
sion of coset leader is0 mod 4.
Ie2 : Set of even coset leaders, where every digit in the5-adic ex-
pansion of coset leader only takes the values0, 1, or 2 and the
number of occurrences of1 in the5-adic expansion of coset leader
is 2 mod 4.
Io: Set of odd coset leaders includingIo1 andIo3 .
Ie: Set of even coset leaders includingIe0 andIo2 .

Using the preceding notation, the trace representation of LCE se-
quence of period5m � 1 is given in the following theorem.



1552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 2003

Theorem 8: The trace representation of LCE sequence of period
n = 5m � 1 is given as

s(t) =
a 2I nfI [I g

2 � tr
k

1
(�a t)

+
a 2I nfI [I g

3 � tr
k

1
(�a t)

+
a 2I

tr
k

1
(�a t) +

a 2I

3 � tr
k

1
(�a t)

+
a 2I

tr
k

1
(�a t):

Proof: For the LCE sequences of period5m� 1, the coefficients
Ai 2 F5, 0 � i � 5m � 2 defined in (7) can be rewritten as

3A�i = �(�1)i + (�1)i�
m�1

a=0

ia

2
mod 5: (23)

Using (23), the theorem can be proved in the same manner as in the
previous theorem.

Forp = 5, the trace representation for LCE sequence of period124
is given in the following example, where the trace function is defined
in Theorem 8.

Example 9: Forn = 53 � 1 = 124 andm = 3, the LCE sequence
s(t) is given as

1110011110111000011100010111001

0011101001100001111111101010111

0010000000101010110100110000100

1110010000100100101101110100110:

The coset leaders for the set of cyclotomic cosets modulo53 � 1 can
be classified as follows:

I
o

1 = f1; 7; 11; 37g

I
o

3 = f31g

I
e

0 = f2; 12; 62g

I
e

2 = f6; 32g

I
onfIo1 [ I

o

3g = f3; 9; 13; 17; 19; 21; 23; 33; 39; 43; 47; 49;

63; 69; 73; 93; 99g

I
enfIe1 [ I

e

3g = f0; 4; 8; 14; 16; 18; 22; 24; 34; 38; 42;

44; 48; 64; 68; 74; 94g:

Then, the LCE sequences(t) of period124 can be expressed as a linear
combination of trace functions overF5 as follows:

s(t) =
a 2I nfI [I g

2 � tr
k

1
(�a t)

+
a 2I nfI [I g

3 � tr
k

1
(�a t)

+
a 2I

tr
k

1
(�a t) +

a 2I

3 � tr
k

1
(�a t)

+
a 2I

tr
k

1
(�a t)

where� is a primitive element ofF5 .
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