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Linear Complexity Over F,, and Trace Representation of Lempel-Cohn—Eastman (LCE) sequeift2], [21], which is a0-1
Lempel-Cohn—Eastman Sequences binary sequence of period™ — 1, i.e., of even length. It has been
shown that LCE sequences have the optimal autocorrelation and
Tor Helleseth Fellow, IEEE Sang-Hyo Kim Student Member, IEEE  balance property. Net al[15] also introduced binary sequences of
and Jong-Seon Ndviember, IEEE period p™ — 1 with optimal autocorrelation property by using the
image of the polynomialz + 1)? 4 az* + b over F,= , which turned
out to be LCE sequences.

Abstract—in thi d , the i lexi F, of . .
stract—n this correspondence, the finear complexity overky o Let x(z) denote the quadratic characteroflefined by

Lempel-Cohn-Eastman (LCE) sequences of periop™ — 1 for an odd
prime p is determined. Forp = 3, 5, and 7, the exact closed-form

expressions for the linear complexity overF;, of LCE sequences of period +1. !f x is a quadratic residue
p™ — 1 are derived. Further, the trace representations for LCE sequences x(z) = 0, if z=0 (2)
of period p™ — 1 for p = 3 and 5 are found by computing the values of -1, if « is a quadratic nonresidue.

all Fourier coefficients in F,, for the sequences. ] . o
Index Terms—t empel-Cohn—Eastman (LCE) sequences, linear com- Helleseth and Yang [9] described LCE sequences by using the indi-
plexity, sequences. cator function and the quadratic character given by

s(t) = %(l—f(at—i—l)—)g(ozt—l—l)) (3)
I. INTRODUCTION

Among properties of periodic sequences [1], [8], the linear Cons{\_/here the indicator functiofi(x) = 1 if + = 0 andI(«) = 0 other-

plexity [5], [6], [20], [24], balance, and correlation properties ard/Ise. . ) .
important for the application of stream ciphers and code-division Hellésethand Yang [9] studied the linear complexity aeof LCE

multiple-access (CDMA) communication systems [22]. A binar?equences. Even though LCE sequences are bingrysequences,they are
sequence is said to have the balance property if the difference betwggfstructed based on the finite fiefdl and, thus, it is more natural

the number ofl’s and 0's in a period of the sequence is at mosi© find the linear complexity oveF}, for LCE sequences. The trace

one. Lets(?) be a binary sequence of peried The autocorrelation representation of sequences is useful for implementing the generator of

function of a binary sequence of perieds defined as sequences and analyzing their properties [6], [11], [18]. Thus, it is of
great interest to represent LCE sequences by using the trace functions.

In this correspondence, the linear complexity o¥grof LCE se-

n—1

R(r) = Z (_1)8(0“”“)' quences of period™ — 1 for an odd primep is determined. Fop =
=0 3, 5, and7, the exact closed-form expressions for the linear complexity
A sequence is defined to have ideal autocorrelation if over F, of LCE sequences of perigd” — 1 are derived. Further, the
n if + =0 mod n trace representations for LCE sequences of perfod- 1 forp = 3
R(r) = { _1: otherwise. and5 are found by computing the values of all Fourier coefficients in

F), for the sequences.
A lot of attention [7], [8], [17], [19] has been devoted to binary se-

quences of perio?™ — 1 with ideal autocorrelation. A binary sequence II. LINEAR COMPLEXITY OVER F, OF LCE SEQUENCES OFPERIOD
of even period: with the balance property is said to have optimal au- o p_ 1

tocorrelation if
0or—4, if n =0 mod4
Blr) = {QOI’—?, if n =2 mod 4.

It is well known that the Fourier transform ofpaary sequence(t)
of periodn = p™ — 1 in the finite field F,,» is given as

n—1

Letp be a prime andn be a positive integer. Lef,» be the finite 4 = 1 Z s('t)of“ 4)
field with p™ elements and’;» = F,=\{0}. Let S be a nonempty o &
subset off,;» anda a primitive element of,» . Then the character- o _ -
istic sequence of perigd™ — 1 of the setS is defined as [9] and its inverse Fourier transform as
, 1, ifa'es —
s(t) = ’ X 1 () = A.,‘ 't 5
*(t) {0., otherwise. @) (1) ; “ ®
Let.5 be a set defined as [9], [12] wherea is a primitive element of,~ andA; € F,m.
g=l2 Zqlo<i< p" =1 1 Using the Fourier transform of the sequences, we first find an ex-
o - = pressionford_;,0 < ¢ < n — 1 of LCE sequences as in the following
where p is an odd prime andv is a primitive element ofF,m. lemma.
Then, the characteristic sequence of this Seis referred to as a  Lemma 1: Let thep-adic expansion of be given as
m—1
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Proof: Using the Fourier transform of the sequences in (4), thdamming weight of their Fourier transform. Thus, we need to deter-

relation for4_, can be derived as follows:

n—1
2nA_; =2 Z s(t)a'
t=0
n—1 )
= Z (1-I(a"4+1)—x(a'+1))a"
t=0

n—1 n—1

= Z 'l = (=1) = Z y(a' +1)a". (8)
t=0 t=0
Fori = 0, (8) can be given as
2nAg =p" —1—-1-— Z x(a' 4+ 1)
t=0
=p" -2 HZ x(a'+1)+ x(l)}— X(l)}
t=0
:pm _ 2 _ O + 1
= —1 mod p.
Thus, we have proved that the lemma holdsifer 0.
For nonzera, (8) can be rewritten as
2mA_; =—(-1)" - Z x(z+ 1)z
rCl*
p
=—(-D'= > x(my-1). ©)
yEL,m

As > varies overF, - , 2 takes all the quadratic residuesij~ exactly

twice and the zero element once. Similarly,” takes all the quadratic
nonresidues i}, as values exactly twice and the zero element once.

mine the cardinality of the sdt | A—_; # 0, 0 < ¢ < n — 1}, which
is calculated from (7). We have proved the following result.

Theorem 2: Let C' be the number of integeis0 < ¢ < p™ — 2
satisfying the relation

m—1 ia
I ()
a=0 2

where thei,'s are coefficients in the-adic expansiory ", i.p” of i.
Then the linear complexity oveF, of the LCE sequence of period
n = p™ — 1 defined in (3) equals

L,=n-C.

p™_1
2

=(=1)"2 modp (112)

(12)

To demonstrate this technique, we will calculate the linear com-
plexity over F,, of the LCE sequence of period = p™ — 1 in the
case ofp = 3, 5, and7. But it is not easy to find the linear complexity
over F,, of LCE sequences fgr > 7.

A. Linear Complexity OvefF; of LCE Sequences of Perigd® — 1

Using the result of Theorem 2, the linear complexity aFgiof LCE
sequences of period = 3™ — 1 is derived in the following theorem.

Theorem 3: The linear complexity oveF; of the LCE sequence of
periodn = 3™ — 1 is given as

L3 — 3nL _ 9!”71

Proof: Forp = 3, itis clear that

B ()= ()=

Itis clear that all the quadratic residues and nonresidues together V\g%hd

the elemen® cover all elements i, .
Using the definition of the quadratic charactgr) in (2), (9) is mod-
ified as

2nA_; =—(-1)'
1 NPT o e
~3 ") = 1)+ x(az?)(az” = 1)']
Z€I,m
i1 : i 2 ;
=—(-1) ~5 Z [(z% = 1) = (az® = 1)1
2€F,m
o1 (i o
=—(-1)" - 3 Z<1>(—1) ‘1-a" Z 22,
=0 ;EFPm
The inner sum only contributes whér= 21, in this caser’ =

—1. Note that wher = 0 thenl — o' = 0. Therefore, we obtain

% m i i — T
2nA_;, = —(=1)' = (" = 1) <p”7 -1 ) (=1) -
2
Reducing modulg for both sides, we have the relation

] Com

-1 > (—1)"_P ™ mod p. (10)
2

From the result of Lucas [2] given by

7 m—1 Ta
<pm_1>:H<p_1>nlOdp
5/ e \g

(10) reduces to (7). d

(p—2)A_; = —(_1)i + <p7n

It is already known from Blahut's theorem [3], [4] that the linear

3" -1 ([even if m = even
2 7 | odd if m = odd.
Then (11) is rewritten as
m—1
H i, = (—=1)" mod 3. (13)

a=0
Thus, all thei,’s in the 3-adic expansion of should bel or 2.
The number of solutions of this system 2! since selecting
io, i1, ..., im—2 Uniquely determines,._,. However, even though
it satisfies (13), the solution corresponding to

7:0:i1 :"':inz—?:Q

must be excluded since it corresponds to 3™ — 1. We conclude that
C = 2™~* —1 and the linear complexity ovéf; of the LCE sequence
of period3™ — 1 equals

L3 — 3nL _ 2!”71. O

B. Linear Complexity OveF; of LCE Sequences of Periéd” — 1

In this case, the linear complexity ovEf of LCE sequences of pe-
riod 5™ — 1 is derived by counting nonzero Fourier coefficients of the
sequences as in the following theorem.

Theorem 4: The linear complexity oveFs of the LCE sequence of
periodn = 5™ — 1 is given as

L%J m
L', — 5m _ g . 27n—4j

7=0

complexity of periodic sequences can be determined by computing thisere|d| is the largest integer less than or equaf to
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Proof: Since“mT“ is an even integer for any integer, (11) for

‘ 1 IllOd 9
= <

where thei,’s are coefficients in thé-adic expansiory_ , i,5" of 4,

0<i<5b™—2andi, € Fs.
3, <;> =1 mod 5.

It can be easily derived that

0 1 2 3
In order to satisfy (14), all theé,’s are larger than or equal t for
0 < a < m — 1 and the number of occurrences= 3 in the 5-adic

m—1

1

a=0

(14)

expansion of should be a multiple ot because the order of element

3in Fs is 4, that is,3" = 1 mod 5. Thatis,i, = 3 occurs4;j times
andi, = 2 or 4 occursm — 4j times in the5-adic expansion of.
For0 < i < 5™ — 2, the number of integerssatisfying (14) can be

counted as
m m—4j
-2 71

m
vy

=y
J=0

wherei = 5™
number of occurrences = 3 in the5-adic expansion ofis 0 mod 4,
because > 5™ — 2.

Therefore, the linear complexity ovét; of the LCE sequence of

period5™ — 1 is given as
m m—4g
-2 ’.

C. Linear Complexity Ovef* of LCE Sequences of Perigd® — 1

L]

-2

=0

L;=5" C=5"

O

Similarly to the previous two cases pf= 3 and5, the linear com-
plexity over F» of the LCE sequence of periad” — 1 is derived by
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wherei, € Fr. Using (16), the theorem can be proved in a similar
manner to that of the previous theorem. O

I1l. TRACE REPRESENTATION OFLCE SEQUENCES OFPERIOD p™ — 1

In this section, the trace representation of LCE sequences of period
p™ — 1 for p = 3 and5 is derived by using the trace functions from
F,. to F,, wherek|m, even though they are binary sequences. For our
sequences, thd;’s in (5) are inF}. If the Fourier coefficientsd;’s
for all elements in a coset corresponding to the eleméritave the
same value, then the summation of all elements in the coset makes the
trace function4; - tr(u“). Further, if A;’s have the same values for
all elements within the same cosetsif-, (5) can be expressed as a
linear combination of the trace functions over given by

s(t) = Z Ag - trhe (@)
a€l

whereL is a set of coset leaders for the set of cyclotomic cosets modulo
p™ — 1, and for eactu € L, F,, is the smallest subfield of,m
containinga®. Thus, it is enough to find the Fourier coefficients’s

for all coset leaders for the set of cyclotomic cosets moguio— 1

if A;'s have the same values for all elements within the same coset.
Let (io, i1, 72, ..., im—1) be a vector corresponding to the coeffi-
cients in thep-adic expansiory” " i.p® of i, 0 < i < p™ — 2.

(17

—1 = (4.4.4 1) is excluded even though the It is clear that all integers corresponding to the cyclic shift of vector
- bl b R .

io, 11, i2, ..., im—1) belong to the same cyclotomic cosetifr .

The trace representation of the sequences of peffod 1 is derived
by computing all thed; coefficients,0 < ¢ < p™ — 2 in (7) for the
LCE sequences in (3).

A. Trace Representation of LCE Sequences of P&¥iod- 1

In order to find the trace representation of LCE sequences of pe-
riod 3™ — 1, leta be a primitive element of the finite fields . Let
tre (") denote the trace function frof,., to Fs, wherek, |m and
Fi, is the smallest subfield of» such thain® € Fii, .

We can classify the coset leaders for the set of cyclotomic cosets
modulo3™ — 1 as follows.

counting nonzero Fourier coefficients of the sequences as in the fol- 7: Set of odd coset leaders, where every digit in 3hadic ex-

lowing theorem.

Theorem 5: The linear complexity oveF: of the LCE sequence of
periodn = 7™ — 1 is given as

Lm—iz—j—kj |moizj—k—2u

1 2
Li=7"=%"%"

j—
3
1=0 j5=0 u=0 v=0
Lm,—i—j—(;c—2u—3vj

m

A <2u +, 3v+j, 6w+ k, D>

w

where|d| is the largest integer less than or equadtandD = m —
2u—i—3v—j—6w—Fkandk, 0 < k < 5 is a positive integer
satisfying

S+ 4tk = 0 mod 6, if m is even
HTHTET3 mod6,  if mis odd.
Proof: Using the relation
T =1 even if m is even
2 { odd if m is odd (15)
(11) forp = 7 can be expressed as
m—1 . . . .
la 10 11 ti—1 NG -
= . e =(-1 d7
I (5)= (5) (2) () -vmmesco

pansion of a coset leader only takes the values); for example,
13=1+34+9=(1,1,1).

I7: Set of even coset leaders excluding the coset leddehere
every digit in the3-adic expansion of coset leader only takes the
valuesl or 0; for examplel0 =14+ 9 = (1, 0, 1).

1°: Set of odd coset leaders includifg.

I°: Set of even coset leaders includihg

Using the above notation, the trace representation of the LCE se-
quence of perio@™ — 1 is given in the following theorem.

Theorem 6: The trace representation of the LCE sequence of period

n = 3™ — 1is given by
ka it kq .
s(t) Z tr, Y (%) £ 2 Z try 7 ()
aq-GIO\If aiele\lf

+2. Z trfv‘” (a*ih).

a,ieflo

Proof: For the LCE sequences of peridd — 1, the coefficients
A; € F5,0 < i < 3™ — 2 defined in (7) can be rewritten as

(T) mod 3. (18)

Now, we have to find alld;’s, 0 < i < 3™ — 2 for the trace repre-
sentation of the LCE sequences of perddtl— 1. Fori = 0, it is easy

m—1

1

a=0

3m

Ai=—(-1D)"+ (-1
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3m_q

to find thatA, = 2. Clearly, for oddmn, *—

=1 mod 2 and for

evenm, 2= = 0 mod 2. Then (18) can be modified as follows:
m—1 [ m—1 ) )
H <1a> = H io = (A + (=1D)) (=)™ mod 3. (19)
a=0 a=0
Note thatj = —i = n—i,1 < j < 3™ — 2, where A, for

j =1 = 0is already found. In th-adic expansion of = > _i,3"
andj =) j.3" itisclearthat, =p—1—i, =2 —1i, forall a,
0<a<<m-—1.

Let us consider three cases as follows.

Case 1:A_; = 4; =0:
We havetofindalfj =n —i4,1<j <3"™ —2suchthatd_; =0
in (19), which is rewritten as

Hia = (=1)™ mod 3.

a

(20)

A necessary condition for (20) is that thes in the 3-adic expansion
> . 1a3" of i only take the values or 2, which means that thg,’s
only take the values or 1. Since2 = —1 mod 3 and2? = 1 mod 3,
the number of occurrencés = 2,0 < a < m — 1 in the 3-adic
expansion of satisfying (20) should be odd for odd and even for
evenm and, thus, the number of occurrenégs= 1 should be even
for any integern. Therefore, the number of occurrenced afi the list
of j., 0 < a < m — 1 should be even for any integer and, thusj is
even. Therefore, the coset leaderdfuch thatd; = 0 belongs to the
setl;, wherej = 0 is excluded.

Case2:4A ; = 4; =1:

In this case, we havetofind gll=n — i, 1 < j < 3™ — 2 such
thatA4; = 1in (19). The following two subcases are considered.

i) Case ofi = even integer (i.e,j = even integer):

We can rewrite (19) as

I+

a

(—1)™ mod 3 (21)

where alli,’s in the3-adic expansion ofhave to take the valudsor 2.
The number of occurrenceés = 2 in the 3-adic expansion of should

be odd for evenr. and even for odd., which means that the number

of occurrences, = 1,0 < a < m — 1 in the3-adic expansion of

should be odd for any integet. Therefore, aljj.’s only take the value
0 or 1 and the number of occurrencesjof= 1 in the3-adic expansion
of j should be odd for any integet, which means that is odd. This

contradicts the assumption thais an even integer. Therefore, there is

no even integej which makes4; = 1.
ii) Case ofi = odd integer (i.e.; = odd integer):
Equation (19) can be written as

Hiu =0 mod 3.

a

(22)

Equation (22) means that at least one g6 in the 3-adic expansion
of i has to take the valu@, which means that at least one 4fs in
the 3-adic expansion of has to take the valu Therefore, the coset
leader ofj belongs to the sef”\I7.

Case 3:4A_; = A; = 2:
In this case, alj = n —4,1 < j < 3™ — 2 such thatd; = 2

in (19), have to be determined, which can be easily found because we

have already found agjl's such thatd; = 0 or 1. Clearly, the remaining
sets of coset leaders for the set of cyclotomic cosets matitile- 1
arel°\I} andI7y. d
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Forp = 3, the trace representation for LCE sequence of pesibd
is given in the following example, where the trace function is defined
in Theorem 6.

Example 7: Forn = 3* — 1 = 80 andm = 4, the LCE sequence
s(t) of period80 is obtained as

s(t) =0101100111001110000001111101110100111111
0010101100001000101001010110110010011000.

The coset leaders for the set of cyclotomic cosets mogilile 1 can
be classified as

IP ={1, 13}
If = {4, 10, 40}
I°\I? = {5, 7, 11, 17, 23, 25, 41, 53}
INI] ={0, 2, 8, 14, 16, 20, 22, 26, 44, 50}.

Then the LCE sequenc€t) of period80 can be expressed as a linear
combination of trace functions ovék as follows:

s(t) = {t1‘14 (a'St) +tri(a™) + tr?(a’llt) + tr?(a’”t)
+ 110 4t (0 + trl (0™ + ] (7))

+ 2 {tr1(a®) + tr1 (a®) + tr1 (2™ + tr] (a™)
+ trf (a'®") 4+ tr7 (@) + tr] (@%) + tr] ()
+tr1(a™) + 1072} + 2 {tr] (o) +tr] (a7}

wherea is a primitive element of ..

B. Trace Representation of LCE Sequences of Péribd- 1

For the periods™ — 1, the trace representation of LCE sequences
is derived similarly to the case of peri@d’ — 1. Let« be a primitive
element of the finite field?s . Lettrt« (a*") denote the trace function
from Fy, to Fs, wherek, |m andFy:, is the smallest subfield dfsm
such tha” € Fii, .

The coset leaders for the set of cyclotomic cosets modfiile- 1
can be classified as follows.

I7: Set of odd coset leaders, where every digit in Jh&dic ex-
pansion of coset leader only takes the val0e$, or 2 and the
number of occurrences dfin the5-adic expansion of coset leader
is 1 mod 4.

I3: Set of odd coset leaders, where every digit in ikadic ex-
pansion of coset leader only takes the valOge$, or 2 and the
number of occurrences ofin the5-adic expansion of coset leader
is 3 mod 4.

I5: Set of even coset leaders excluding coset leddehere every
digit in the5-adic expansion of coset leader only takes the values
0,1, or2 and the number of occurrencesloh the5-adic expan-
sion of coset leader & mod 4.

I5: Set of even coset leaders, where every digit indregic ex-
pansion of coset leader only takes the valOe$, or 2 and the
number of occurrences ofin the5-adic expansion of coset leader
is 2 mod 4.

1°: Set of odd coset leaders includifiggand’s .

I°: Set of even coset leaders includifigand 5.

Using the preceding notation, the trace representation of LCE se-
quence of period™ — 1 is given in the following theorem.
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Theorem 8: The trace representation of LCE sequence of period

n = 5" — 1is given as [
s(t) = Z 2. trfa’ (i) (2]
a; €ION{IPUIS} 3]
ka;  a;
+ > Bt () "
a;€le\{{§UL5}
DR CROE BRI CD 5]
aiello aiEI??
+ 30 e, [6]
”'iels
(7]

Proof: For the LCE sequences of peridtl — 1, the coefficients
A; € F5,0 < i< 5™ —2defined in (7) can be rewritten as

) X . 5™ _1 m_1 ia [8]
3A; = —(=1)'4+(-1) 2 al;[U <2 mod 5. (23) (9]
Using (23), the theorem can be proved in the same manner as in tl'[nfb]
previous theorem. O

. 11
Forp = 5, the trace representation for LCE sequence of periad [t

is given in the following example, where the trace function is defined

in Theorem 8. 12]
12
Example 9: Forn = 5° — 1 = 124 andm = 3, the LCE sequence

s(t) is given as [13]

1110011110111000011100010111001
0011101001100001111111101010111 (14]
0010000000101010110100110000100 [15]
1110010000100100101101110100110.

The coset leaders for the set of cyclotomic cosets moiitile 1 can  [16]
be classified as follows:

7 ={1,7 11, 37} [17]
I3 = {31}
I; =12, 12, 62} [18]
I; = {6, 32}

IN{I U I} ={3,9, 13, 17, 19, 21, 23, 33, 39, 43, 47, 49, [19]

63, 69, 73, 93, 99}
IN{I{UI5Y = {0, 4, 8, 14, 16, 18, 22, 24, 34, 38, 42, 20]
44, 48, 64, 68, T4, 94}.
[21]
Then, the LCE sequeneét) of period124 can be expressed as a linear

combination of trace functions ovét as follows: [22]

s(t) = Z 2- trlf"“' (a™h) [23]

as€To\{ToUT2}
ka; / a;t
+ > Bt M(e)
i €IN{IUIS}
ko, | a ko, a
+ Z try " (o) + Z 3 tr, i (o)

a €17 a; €19

+ Z t1‘fa7 (a®)

aiels

[24]

wherea is a primitive element of 5.
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