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Abstract—For a prime and positive integers and such that
1, Sidel’nikov introduced -ary sequences (called Sidel’nikov

sequences) of period 1, the out-of-phase autocorrelation magnitude
of which is upper bounded by 4. In this correspondence, we derived the au-
tocorrelation distributions, i.e., the values and the number of occurrences
of each value of the autocorrelation function of Sidel’nikov sequences.
The frequency of each autocorrelation value of an -ary Sidel’nikov
sequence is expressed in terms of the cyclotomic numbers of order . It
is also pointed out that the total number of distinct autocorrelation values
is dependent not only on but also on the period of the sequence, but
always less than or equal to + 1.

Index Terms—Autocorrelation, autocorrelation distribution, cyclotomic
numbers, -ary sequences, Sidel’nikov sequences.

I. INTRODUCTION

With the growing need of high-speed data communications, which
usually adopt M -ary modulation schemes as a transmission standard,
it becomes more important to find M -ary codes with good error cor-
rectability andM -ary sequences with good correlation property.

For a prime p and a positive integer M such that M jp � 1,
Sidel’nikov [1] introduced the M -ary power residue sequences of
period p with the magnitude of out-of-phase autocorrelation values
upper-bounded by

p
5 or 3. For a positive integern such thatM jpn�1,

he also constructed M -ary sequences (called Sidel’nikov sequences)
of period pn� 1, the out-of-phase autocorrelation magnitude of which
is upper-bounded by 4 [1].

Later, Lempel, Cohn, and Eastman [2] introduced the binary
Sidel’nikov sequences of period pn � 1 without knowledge of the
earlier work of Sidel’nikov. These binary sequences have near-ideal
autocorrelation property which, under the condition of balancedness,
is optimal. Recently, Helleseth, Kim, and No derived the linear
complexity over Fp of binary Sidel’nikov sequences and their trace
representation [3]. Green and Green [4], [5] introduced the polyphase
Legendre sequences of prime period p, which later turned out to be
the power residue sequences constructed by Sidel’nikov [1].

Boztas, Hammons, and Kumar [6] proposed quaternary sequences
with near-optimum cross-correlation properties. And Kumar, Helle-
seth, Calderbank, and Hammons [7] constructed large families of qua-
ternary sequences with low cross correlation. These sequences have
relatively large magnitude of out-of-phase autocorrelation values, but
low cross-correlation values.

Lee [8] devised a coding rule based on multiplicative characters of
Fp for constructing the almostM -ary sequences with perfect periodic
autocorrelation property. The term “almostM -ary” means that in a pe-
riod of the sequence, the symbol “zero” occurs exactly once and all
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the other symbols are taken from the set of complex M th roots of
unity. Through the replacement of the symbol “zero” by any M -ary
symbol, the almost M -ary Lee sequence can be easily transformed
into an M -ary sequence, the magnitude of out-of-phase autocorrela-
tion values of which is upper-bounded by 2 [9]. However, this sequence
does not have the balance property.
Lüke, Schotten, and Hadinejad-Mahram [9], [10] introduced the

generalized Sidel’nikov sequences, which are almost quaternary. These
sequences have better autocorrelation properties than Sidel’nikov se-
quences at the cost of alphabet size.
In this correspondence, we derived the autocorrelation distributions,

i.e., the values and the number of occurrences of each value of the
autocorrelation function of Sidel’nikov sequences. The frequency of
each correlation value of anM -ary Sidel’nikov sequence is expressed
in terms of the cyclotomic numbers of order M . It is also pointed out
that the total number of distinct autocorrelation values is dependent not
only onM but also on the period of the sequence, but always less than
or equal to M

2
+ 1.

II. PRELIMINARIES

Let s(t) be an M -ary sequence of period N and !M a complex
M th root of unity, !M = ej . The autocorrelation function of s(t)
is defined as

R(� ) =

N�1

t=0

!
s(t)�s(t+�)
M

where 0 � � � N � 1.
Sidel’nikov [1] introducedM -ary sequences as follows.

Definition 1: [1] Let p be a prime and � a primitive element in
the finite field Fp with pn elements. Let M j pn � 1. Let Sk; k =
0; 1; . . . ;M � 1; be the disjoint subsets of Fp defined as

Sk = �
Mi+k � 1 j 0 � i <

pn � 1

M
:

TheM -ary Sidel’nikov sequence s(t) of period pn � 1 is defined as

s(t) =
k; if �t 2 Sk; 0 � k �M � 1

k0; if t = p �1
2

where k0 is some integer moduloM .

Note that � = �1, M�1
k=0 Sk = Fp nf�1g, and 0 2 S0.

Let Nk be the number of occurrences of symbol k in one period of
Sidel’nikov sequence, i.e.,

Nk = jft j s(t) = k; 0 � t � p
n � 2gj:

If k0 6= 0, then we have

Nk =

p �1
M

; if k 6= 0; k0
p �1
M

+ 1; if k = k0
p �1
M

� 1; if k = 0:

It is clear that the M -ary Sidel’nikov sequences with k0 = 0 are bal-
anced.
We can represent the M -ary Sidel’nikov sequences using the indi-

cator function and the multiplicative character of Fp .

Definition 2: The indicator function is defined as

I(x) =
1; if x = 0

0; if x 6= 0:
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Definition 3: The multiplicative character of orderM of Fp is de-
fined as

 M (�t) = ej ; if �t 2 F �

p

and

 M (0) = 0

where � is a primitive element in Fp ,M jpn�1, and 0�t�pn�2.

Then theM -ary Sidel’nikov sequence can be expressed as

!
s(t)
M = !kM I(�t + 1) +  M (�t + 1): (1)

Later, we will see the close relation between autocorrelation distri-
butions of Sidel’nikov sequences and cyclotomic numbers.

Definition 4: Let � be a primitive element in Fp . The cyclotomic
classes Cu, 0 � u � M � 1, in Fp are defined as

Cu = �Ml+u 0 � l <
pn � 1

M
:

For fixed positive integers u and v, not necessarily distinct, the cyclo-
tomic number (u; v)M is defined as the number of elements zu 2 Cu

such that 1 + zu 2 Cv .

Following lemma [11, p. 25] shows the elementary relationships be-
tween the cyclotomic numbers.

Lemma 5 : [11]

1) For any integers l1; l2; (i+Ml1; j +Ml2)M = (i; j)M ;
2) (i; j)M = (M � i; j � i)M ;
3)

(i; j)M =
(j; i)M ; if p �1

M
is even

(j +M=2; i+M=2)M ; if p �1
M

is odd;

4) M�1
j=0 (i; j)M = (pn � 1)=(M)� �i, where

�i =
1; if p �1

M
is even and i = 0

1; if p �1
M

is odd and i =M=2

0; otherwise;

5) M�1
i=0 (i; j)M = (pn � 1)=(M)� �j , where

�j =
1; if j = 0

0; otherwise.

III. AUTOCORRELATION OF THE SIDEL’NIKOV SEQUENCES

From [12], we can get some useful properties of the multiplicative
character.

Property 6 : [12] Let M j pn � 1. The multiplicative character
 M (x) of Fp has the following properties:

1)
x2F

 M (x) = 0,
2) � M (a) =  �1M (a) =  M (a�1) for a 2 F �p ,
3)  M (a) M(b) =  M (ab) for a; b 2 Fp ,
4)  M (a) � M (b) =  M (a=b) for a 2 Fp and b 2 F �p ,

where � denotes complex conjugate of  .

Using Property 6, the autocorrelation function of the M -ary
Sidel’nikov sequences can be derived as follows.

Theorem 7 : [1] Let s(t) be the M -ary Sidel’nikov sequence of
period N = pn � 1 given by

s(t) =
k; if �t 2 Sk
k0; if t = p �1

2
:

Then the nontrivial (i.e., � 6� 0 mod pn � 1) autocorrelation function
of s(t) is given as

R(�) = !kM
� M (1� �� ) + !�kM  M (1� ��� )� M(��� )� 1:

Proof: Although a similar proof has been done by Sidel’nikov
[1], here we will restate it in detail for the subsequent corollary.
Using (1), the autocorrelation R(�) of s(t) can be written as

R(�) =

N�1

t=0

!kM I(�t + 1) +  M(�t + 1)

� !�kM I(�t+� + 1) � M (�t+� + 1)

=

N�1

t=0

I(�t + 1)I(�t+� + 1) + !kM I(�t + 1)

� � M (�t+� + 1) +  M (�t + 1)!�kM I(�t+� + 1)

+  M (�t + 1) � M(�t+� + 1) :

Clearly, I(�t+1)I(�t+� +1) = 0 for � 6� 0 mod N and we have

N�1

t=0

I(�t + 1) � M(�t+� + 1) = � M (��� + 1)

N�1

t=0

I(�t+� + 1) M(�t + 1) =  M (���� + 1):

Thus, we have

R(�) = !kM
� M (��� + 1) + !�kM  M (���� + 1)

+

N�1

t=0

 M (�t + 1) � M(�t+� + 1):

Using Property 6, we have

N�1

t=0

 M (�t + 1) � M (�t+� + 1)

=

N�1

t=0;t6= ��

 M
�t + 1

�t+� + 1
: (2)

Note that as t varies from 0 to N � 1 except p �1
2

� � , � +1
� +1

covers all elements in Fp nf1; ���g. Then (2) can be rewritten as

N�1

t=0;t6= ��

 M
�t + 1

�t+� + 1
=

x2F

 M (x)�  M (1) M(��� )

=� M(��� )�  M (1):

Thus, we have for � 6= 0

R(�) = !kM
� M (1� �� ) + !�kM  M (1� ��� )�  M (��� )� 1:

Let y = �� in Fp nf0; 1g. Using the fact that

 M (�1) M
1

y
=  M

1

1� y
 M

y � 1

y

we can modify Theorem 7 into the more useful form as follows.

Corollary 8: The autocorrelation of the M -ary Sidel’nikov se-
quences can be written as follows: When  M (�1) = 1

R(y) = � !kM M
1

1� y
� 1 !�kM  M

y � 1

y
� 1 :
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When  M (�1) = �1

R(y) = !kM M
1

1� y
+ 1 !�kM  M

y � 1

y
+ 1 � 2:

For y 2 Fp nf0; 1g such that  M ( 1

1�y
) = !uM and  M (y�1

y
) =

!vM , the autocorrelation R(y) can be rewritten as

Ru;v = � !u+kM � 1 !v�kM � 1 ; for  M (�1) = 1 (3)

Ru;v = !u+kM + 1 !v�kM + 1 � 2; for  M (�1) = �1:

(4)

The following lemma tells us about when  M (�1) takes the value
of +1 or �1. We omit the proof.

Lemma 9: Let M j pn � 1. For p = 2;  M (�1) =  M (1) = 1.
For an odd prime p

 M (�1) =
+1; if p �1

M
is even

�1; if p �1

M
is odd.

IV. AUTOCORRELATION DISTRIBUTIONS OF SIDEL’NIKOV SEQUENCES

In this section, we derive the values of the autocorrelation function
of an M -ary Sidel’nikov sequence given in Corollary 8 and express
the frequency of each value in terms of the cyclotomic numbers of
orderM . The following lemma gives us the number of possible distinct
out-of-phase autocorrelation values of M -ary Sidel’nikov sequences.
Here, by the term possible, we imply that some of the autocorrelation
values may have frequency zero depending onM and the period of the
sequences.

Lemma 10: The number of distinct out-of-phase autocorrelation
values ofM -ary Sidel’nikov sequences is less than or equal to

M(M � 1)

2
+ 1:

Proof: It is clear that the number of distinct Ru;v ’s does not de-
pend on k0. Thus, we will prove it for the case of k0 = 0. It is obvious
that Ru;v = 0 (or �2) if u = 0 or v = 0 (or u =M=2 or v =M=2).
As Ru;v = Rv;u, the number of distinct out-of-phase autocorrelation
values is 1 + (M � 1) + M�1

2
.

It is clear that some of the out-of-phase autocorrelation values might
not occur, specially for the case of the large alphabet sizeM compared
to the period of the sequences.

Corollary 8 tells us that the autocorrelation distribution is solely de-
pendent on Au;v , the cardinality of the sets Su;v defined as

Su;v = y 2 Fp nf0;1g  M
1

1� y
= !uM ;

 M
y � 1

y
= !vM

for u; v 2 f0; 1; 2; . . . ;M � 1g.
Then Au;v can be represented in terms of cyclotomic numbers of

orderM as in the following theorem.

Theorem 11: Au;v is represented as

Au;v = (u+ v; v)M :

Proof:
Case 1:  M (�1) = 1

From  M ( 1

1�y
) = !uM and  M (y�1

y
) = !vM , we have

 M
1

1� y
 M

y � 1

y
=  M

1

y
= !u+vM :

In other words, 1� y 2 C
�u and y 2 C

�u�v . Since �y and y are in
the same cyclotomic class, by applying part 2) of Lemma 5, we have

Au;v = (�u� v;�u)M = (u+ v; v)M :

Case 2:  M (�1) = �1
Similarly, we have

 M
1

1� y
 M

y � 1

y
=  M �

1

y
= !u+vM :

Therefore, we have 1 � y 2 C
�u and �y 2 C

�u�v . Thus, again we
have Au;v = (�u� v;�u)M = (u+ v; v)M .

Theorem 12: Let N(Ru;v) be the number of y 2 Fp nf0; 1g such
thatR(y) = Ru;v . Then the out-of-phase autocorrelation distributions
of anM -ary Sidel’nikov sequences of period pn � 1 are given as fol-
lows.
If  M (�1) = 1
1) N(0) =

M�1

i=1

((i; i+ k0)M + (i; k0)M) + (0; k0)M ;

2) N(Rk;k) = (2k; k + k0)M , for 1 � k � M � 1;
3) N(Ru;v) = (u + v; v + k0)M + (u + v; u + k0)M , for 1 �

u < v � M � 1.

If  M (�1) = �1

1) N(�2) =
M�1

i=0;i6=

M

2
+i; i+k0

M
+ M

2
+i; M

2
+k0

M

+ 0; M
2
+k0

M
;

2) N(Rk;k) = (2k; k + k0)M , for 0 � k � M � 1 and k 6=
(M=2);

3) N(Ru;v) = (u + v; v + k0)M + (u + v; u + k0)M , for 0 �
u < v � M � 1; u 6= (M=2), and v 6= (M=2).

Proof: If  M (�1) = 1, we have

Ru;v = �(!u+k � 1)(!v�k � 1):

Thus, we have

N(0) =

M�1

u=0

Au;k +

M�1

v=0

A�k ;v �A�k ;k

=

M�1

i=1

((i; i+ k0)M + (i; k0)M) + (0; k0)M :

Similarly, we have

N(Rk;k) = Ak�k ;k+k = (2k; k + k0)M

and

N(Ru;v) = Au�k ;v+k +Av�k ;u+k

= (u+ v; v + k0)M + (u+ v; u+ k0)M :

The proof for the case of  M(�1) = �1 can be done similarly.

We can easily derive the upper bound of maximummagnitude of the
autocorrelation values ofM -ary Sidel’nikov sequences as follows.

Theorem 13: The upper bound of the maximum magnitude of
out-of-phase autocorrelation values of M -ary Sidel’nikov sequences
is given as follows.
If  M (�1) = 1

max
0���p �2

jR(� )j �
4; ifM is even
4 cos2 �

2M
; ifM is odd

(5)
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and if  M(�1) = �1

max
0���p �2

jR(� )j �
2
p
2; ifM � 0 mod 4

2 cos2 �

M
+ 1; ifM � 2 mod 4:

(6)

Proof: It is also clear that the upper bound of the maximummag-
nitude ofRu;v does not depend on k0. Thus, we will prove it for k0=0.

Case 1. If  M (�1) = 1, from (3), it is easy to see that the max-
imum magnitude of autocorrelation values is achieved when (u; v) =
(M
2
; M
2
) ifM is even or (u; v) = (M�1

2
; M�1

2
) ifM is odd. Thus, (5)

can be easily derived.
Case 2. If  M (�1) = �1, from (4), we have

Ru;v = 4cos
�u

M
cos

�v

M
exp j

�

M
(u+ v) � 2:

Then after some trigonometric manipulation, we can obtain that

jRu;vj2 = 4 sin
2�u

M
sin

2�v

M
+ 4:

Then, the maximum magnitude of autocorrelation values is achieved
when

(u; v) =
M

4
;
M

4
or

3M

4
;
3M

4
; ifM � 0 mod 4

or

(u; v) =
M � 2

4
;
M � 2

4
or

3M � 2

4
;
3M � 2

4
;

ifM � 2 mod 4:

Thus, (6) is easily derived.

V. EXAMPLES

The cyclotomic numbers of order 2; 3; 4; 6; and 8 in the field Fp
have been known [11]. Using the result of the preceding section and
the already known cyclotomic numbers (u; v)M , we can derive the au-
tocorrelation distributions of Sidel’nikov sequences for the cases of bi-
nary, ternary, quaternary, sextary, and octary sequences.

In this section, autocorrelation distributions of ternary and quater-
nary Sidel’nikov sequences are evaluated. Using Corollary 8, we can
have the following corollary.

Corollary 14: The autocorrelation distribution of the ternary
(M = 3) Sidel’nikov sequences of period pn � 1 with k0 = 0 is
given by

R(�) =

pn � 1; once
0; 5p �16�c

9
times

�3; 2p �4�c
9

times
3!3;

p +1+c

9
times

3!23 ;
p +1+c

9
times

where 4pn = c2 + 27d2, c � 1 (mod 3), and !3 is a complex third
root of unity.

Proof: From Lemma 9, it is clear that  3(�1) = 1. Since
Ru;v = �(!u3 � 1)(!v3 � 1), we have

Ru;v =

0; if u = 0 or v = 0

3!3; if u = 1 and v = 1

3!23 ; if u = 2 and v = 2

�3; if u = 1 and v = 2 or vice versa.

From Theorem 12, we have

N(0) = (0; 0)3 + (1; 1)3 + (2; 2)3 + (1; 0)3 + (2; 0)3

N(R1;1) = (2; 1)3

N(R2;2) = (1; 2)3

N(R1;2) = (0; 1)3 + (0; 2)3:

And finally, the cyclotomic numbers of order 3 can be obtained from
[11] and they are

(0; 0)3 =
pn � 8 + c

9

(0; 1)3 = (1; 0)3 = (2; 2)3 =
2pn � 4� c� 9d

18

(0; 2)3 = (1; 1)3 = (2; 0)3 =
2pn � 4� c+ 9d

18

(1; 2)3 = (2; 1)3 =
pn + 1 + c

9
:

The following example shows the autocorrelation distribution of the
ternary Sidel’nikov sequences of period 73 � 1 with k0 = 0.

Example 15: For p = 7 and n = 3, from 4pn = c2 + 27d2 and
c � 1 (mod 3), we have c = �20 and d = �6. From Corollary 14,
we have

R(�) =

342; once
0; 191 times
�3; 78 times
3!3; 36 times
3!23 ; 36 times.

Similarly, for quaternary Sidel’nikov sequences, we have the fol-
lowing corollary.

Corollary 16: The autocorrelation distributions of the quaternary
(M = 4) Sidel’nikov sequences of period pn � 1 with k0 = 0 are
given as follows.
If  4(�1) = 1

R(�) =

pn � 1; once
0; 7p �29+6s

16
times

j2; p +1�2s
16

times
�4; p �3+2s

16
times

�j2; p +1�2s
16

times
�2 + j2; p +1�2s

8
times

�2; p �3+2s
8

times
�2� j2; p +1�2s

8
times

and if  4(�1) = �1

R(�) =

pn � 1; once
�2; 7p �9+6s

16
times

2; p �7+2s
16

times
�2 + j2; p �3�2s

16
times

�2� j2; p �3�2s
16

times
j2; p �3�2s

8
times

�j2; p �3�2s
8

times
0; p +1+2s

8
times

where pn = s2 + 4t2 and s � 1 (mod 4).
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Proof: If  4(�1) = 1

Ru;v =

0; if u = 0 or v = 0

j2; if u = 1 and v = 1

�4; if u = 2 and v = 2

�j2; if u = 3 and v = 3

�2 + j2; if u = 1 and v = 2 or vice versa

�2; if u = 1 and v = 3 or vice versa

�2� j2; if u = 2 and v = 3 or vice versa.

From Theorem 12, we have

N(0) = (0; 0)4 + (1; 1)4 + (2; 2)4 + (3; 3)4 + (1; 0)4

+ (2; 0)4 + (3; 0)4

N(R1;1) = (2; 1)4; N(R2;2) = (0; 2)4; N(R3;3) = (2; 3)4

N(R1;2) = (3; 2)4 + (3; 1)4; N(R1;3) = (0; 3)4 + (0; 1)4

N(R2;3) = (1; 3)4 + (1; 2)4:

And finally, the cyclotomic numbers of order 4 can be obtained from
[11], and they are

(0; 0)4 =
pn � 11� 6s

16

(0; 1)4 = (1; 0)4 = (3; 3)4 =
pn � 3 + 2s+ 8t

16

(0; 2)4 = (2; 0)4 = (2; 2)4 =
pn � 3 + 2s

16

(0; 3)4 = (3; 0)4 = (1; 1)4 =
pn � 3 + 2s� 8t

16
(1; 2)4 = (1; 3)4 = (2; 1)4

= (3; 1)4 = (2; 3)4 = (3; 2)4 =
pn + 1� 2s

16
:

And if  4(�1) = �1

Ru;v =

�2; if u = 2 or v = 2

2; if u = 0 and v = 0

�2 + 2j; if u = 1 and v = 1

�2� j2; if u = 3 and v = 3

j2; if u = 0 and v = 1 or vice versa

�2j; if u = 0 and v = 3 or vice versa

0; if u = 1 and v = 3 or vice versa.

From Theorem 12, we have

N(�2) = (0; 2)4 + (2; 0)4 + (3; 1)4 + (1; 3)4

+ (2; 2)4 + (3; 2)4 + (1; 2)4

N(R0;0) = (0; 0)4; N(R1;1) = (2; 1)4; N(R3;3) = (2; 3)4

N(R0;1) = (1; 0)4 + (1; 1)4; N(R0;3) = (3; 0)4 + (3; 3)4

N(R1;3) = (0; 3)4 + (0; 1)4:

And finally, the cyclotomic numbers of order 4 can be obtained from
[11], and they are

(0; 0)4 = (2; 2)4 = (2; 0) =
pn � 7 + 2s

16

(0; 1)4 = (1; 3)4 = (3; 2)4 =
pn + 1 + 2s� 8t

16

(0; 2)4 =
pn + 1� 6s

16

(0; 3)4 = (1; 2)4 = (3; 1)4 =
pn + 1 + 2s+ 8t

16
(1; 0)4 = (1; 1)4 = (2; 1)4

= (2; 3)4 = (3; 0)4 = (3; 3)4 =
pn � 3� 2s

16
:

The following example shows the autocorrelation distribution of the
quaternary Sidel’nikov sequences of period 173 � 1 with k0 = 0.

Example 17: For p = 17 and n = 3, we have  4(�1) = 1. From
pn = s2+4t2 and s � 1 (mod 4), we have s = �47 and t = �26.
From Corollary 16, we have

R(� ) =

4912; once
0; 2130 times
�4; 301 times
�2; 602 times
�2 + j2; 626 times
�2� j2; 626 times
j2; 313 times
�j2; 313 times.

And the following example shows the autocorrelation distribution of
the quaternary Sidel’nikov sequences of period 133 � 1 with k0 = 0.

Example 18: For p = 13 and n = 3, we have 4(�1) = �1. From
pn = s2 + 4t2 and s � 1 (mod 4), we have s = 9 and t = �23.
From Corollary 16, we have

R(�) =

2196; once
�2; 964 times
2; 138 times
0; 277 times
�2 + j2; 136 times
�2� j2; 136 times
j2; 272 times
�j2; 272 times.
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