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Abstract—In this correspondence, three methods of constructing low-
correlation zone (LCZ) sequences are proposed. In the first method, we
constructed binary LCZ sequence sets of period 2 �1 using the Legendre
sequences of period 2 �1 as a column sequence whenmjn. In the second
method, we devise a column sequence set of length 2 � 1 from a bi-
nary sequence of period 2 � 1 having ideal autocorrelation property and
this column sequence set is used to construct binary LCZ sequence sets of
period 2 � 1 when (m+ 1)jn. In the third method, p-ary LCZ sequence
sets are constructed by adopting p-ary sequence of period p � 1 with
ideal autocorrelation for integers n and m such that mjn as a column se-
quence. The second and third methods give us the optimal sets with respect
to the bound by Tang, Fan, and Matsufuji. Finally, a construction method
of p � p p-ary Hadamard matrices from optimal LCZ sequence sets is
proposed.

Index Terms—p-ary sequences, binary sequences, Legendre sequences,
low-correlation zone (LCZ) sequences, sequences, unified sequences.

I. INTRODUCTION

Unlike the conventional code-division multiple-access (CDMA) sys-
tems, in the quasi-synchronous CDMA system [1] where maintaining
synchronization within a few chips is feasible even in the reverse link
due to the relatively small transmission delay, the most important prop-
erty of the sequences used for reducing multiple-access interference
(MAI) is low-correlation property around the origin [2]. Long, Zhang,
and Hu [2] proposed the sequence set that has low-correlation value
around the origin, which can be used as a spreading sequence in the
quasi-synchronous CDMA system. The sequence set with this prop-
erty is called low-correlation zone (LCZ) sequence. They also have
shown that an LCZ sequence set has better performance than other
well-known sequence sets with optimal correlation property [2]. For
a prime p, Tang and Fan [3] proposed p-ary LCZ sequence sets by ex-
tending the alphabet size of each sequence in Long’s work [2]. And
they also proposed a construction method of p-ary LCZ sequence sets
by using interleaved sequences [4]. Kim, Jang, No, and Chung pro-
posed a new construction method of quaternary LCZ sequence sets by
using binary sequence of the same period with ideal autocorrelation
and they also calculated the correlation distributions of their sequence
sets constructed from m-sequence and GMW sequence [5]. Their qua-
ternary LCZ sequence set is optimal with respect to the bound by Tang,
Fan, and Matsufuji [6]. But for a prime p, no optimal set of p-ary LCZ
sequence set has been reported yet.
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In this correspondence, three methods of constructing LCZ se-
quences are proposed. In the first method, we constructed binary LCZ
sequence sets of period 2n�1 using the Legendre sequences of period
2m � 1 as a column sequence when mjn. In the second method,
we devise a column sequence set of length 2m+1 � 1 from a binary
sequence of period 2m � 1 having ideal autocorrelation property and
this column sequence set is used to construct binary LCZ sequence
sets of period 2n� 1 when (m+1)jn. In the third method, p-ary LCZ
sequence sets are constructed by adopting p-ary sequence of period
pm � 1 with ideal autocorrelation for integers n and m such that
mjn as a column sequence. The second and third methods give us the
optimal sets with respect to the bound by Tang, Fan, and Matsufuji [6].
Finally, a construction method of pn � pn p-ary Hadamard matrices
from optimal LCZ sequence sets is proposed.

II. PRELIMINARIES

In this section, we introduce some definitions and notations.
Let S be a set of D sequences of period N . If the magnitude of

correlation function between any two sequences in S takes the values
less than or equal to � for the offset � in the range �Z < � < Z , then
S is called an (N;D;Z; �) LCZ sequence set.

Let p be a prime and Fp be the finite field with pn elements. Let
vi(x) and vj(x) be two p-ary sequences of period pn � 1, defined in
F �p = Fp nf0g. Then for � 2 F �p , the correlation function between
two p-ary sequences vi(x) and vj(x) is defined as

Rv ;v (�) =
x2F

!
v (x�)�v (x)
p

where !p is a complex primitive p-th root of unity. We will abuse the
notation of the correlation function as Ri;j(�) = Rv ;v (�� ) for � =
�� , where � is a primitive element in Fp .

Let v(t) be a p-ary sequence of period pn � 1. Then v(t) is said
to have balance property if number of zero element is one less than
that of each nonzero element in one period of the sequence. And if the
sequence v(t)� v(t+ � ) is balanced for all � 6� 0 mod pn � 1, then
v(t) is said to have difference-balance property.

The trace function trnm(�) from Fp to Fp is defined by

trnm(x) =

�1

i=0

xp

where x 2 Fp and mjn. The trace function has the following proper-
ties:

1) trnm(ax + by) = a trnm(x) + b trnm(y), for all a; b 2 Fp ,
x; y 2 Fp ;

2) trnm(x
p ) = trnm(x); for all x 2 Fp .

It is well known that trnm(�
t) is a pm-arym-sequence of period pn�1,

where � is a primitive element in Fp .
Klapper [7] introduced the d-form function. A d-form functionH(x)

on Fp over Fp is defined as a function satisfying for any y 2 Fp
and x 2 Fp

H(yx) = ydH(x): (1)

Kim, Jang, No, and Chung [5] derived the following lemma, which
can be used in the proof of the subsequent theorem.

Lemma 1 ([5]): Let m and n be positive integers such that mjn.
Let A = f1; �; . . . ; �T�1g, where � is a primitive element in Fp
and T = (pn�1)=(pm�1). Let h(x) be a 1-form function from Fp
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onto Fp with balance and difference-balance property. For a given
� 2 Fp n Fp , let M�(a; b) be the number of x2 2 A satisfying

h(�x2) = a and h(x2) = b; for a; b 2 Fp : (2)

Then, we have

M�(0; 0) =
pn�2m � 1

pm � 1

c2F

M�(c; 0) =
c2F

M�(0; c) = pn�2m

d2F

M�(cd; d) = pn�2m; for any c 2 F �p :

Tang and Fan [4] stated the following theorem using the interleaved
sequence [8], which can be used for the construction of an LCZ se-
quence set.

Theorem 2 ([4]): Let m and n be integers such that mjn. Let f(y)
and g(y) be cyclically distinct sequences of period pm�1 fromFp to
Fp and the function h(x) from Fp to Fp be a 1-form function over
Fp with balance and difference-balance property. If we set f(0) =
g(0) = 0, then the correlation function Rf;g(�) between f(h(x)) and
g(h(x)) is given as

Rf;g(�) =
x2F

!f(h(�x))�g(h(x))p

=
pn�m Cf;g(�) + 1 � 1; if � 2 Fp

pn�2m(I(f) + 1)(�I(g) + 1)� 1; if � =2 Fp

where I(f) =
y2F

!
f(y)
p ,Cf;g(�) = y2F

!
f(�y)�g(y)
p , and

�I(�) denotes complex conjugate of I(�).

In the above theorem, f(�) and g(�) are called the column sequences
of period pm�1 in the two dimensional representation of the sequences
f(h(�)) and g(h(�)) of period pn � 1, respectively.

It is clear that I(f) = �1 corresponds to the balance property of the
column sequence f(y) defined on F �p if p is a prime. If the column
sequences are balanced, we have

Rf;g(�) = �1; for � =2 Fp :

In order to have Rf;g(1) = �1, we have to have Cf;g(1) = �1,
which means that the in-phase cross-correlation function of each pair
of sequences in the column sequence set has the value �1.

Property 3: LetA be the set of sequences of period pm�1 satisfying
the following properties:

1) all the sequences in the set A are cyclically distinct;
2) each sequence in the set A has the balance property;
3) in-phase cross-correlation value of each pair of the sequences in

the set A is always �1.

Theorem 2 tells us that if we have the sequence set A satisfying
Property 3, then the (pn � 1; jAj; (pn � 1)=(pm � 1); 1) p-ary LCZ
sequence set can be constructed.

In the subsequent sections, we propose methods of constructing the
column sequence sets satisfying Property 3, some of which are of the
maximum size.

III. BINARY LCZ SEQUENCE SETS FROM LEGENDRE SEQUENCES

In this section, we propose a new binary LCZ sequence set using the
Legendre sequence as a column sequence.

Let s(t) be a binary sequence from F �2 to F2 and � be a primitive
element inF2 . Then Fourier transform S(�) of the sequence s(t) and
its inverse transform are given as

S(�) =

2 �2

t=0

s(t)���t

s(t) =

2 �2

�=0

S(�)��t:

Legendre sequences of period p for any prime p are defined as

s(t) =

1; if t = 0 mod p

0; if t is a quadratic residue mod p

1; if t is a quadratic nonresidue mod p.
(3)

And it is well known that s(t), t = 0; 1; 2; . . . ; p� 1, has the ideal
autocorrelation property if and only if p � 3 (mod 4).

Lemma 4 ([10]): Let m be an integer such that 2m � 1 is a prime.
Let s(t) be the Legendre sequence defined in (3). Then s(t) can be
represented as follows:

s(t) =
j2QR

�jt

where � is a primitive element in F2 and QR is the set of quadratic
residues mod 2m � 1.

Then the Legendre sequences have the properties in the following
lemmas.

Lemma 5: Let m > 3 be an integer such that 2m � 1 = p �
3 (mod 4) is a prime. Let s(t) be the Legendre sequence of period
2m � 1 defined in (3). Then there is no integer pair (a; b) that satisfies
the relation

s(t) + s(t+ a) + s(t+ b) = 0; 0 � a; b � 2m�1 � 1: (4)

Proof: It is clear that (4) cannot hold when a = b. Therefore
without loss of generality, we assume a < b. Taking Fourier transform
of (4), we get the following equation.

(1 + ��a + ��b)S(�) = 0 (5)

where � is a primitive element inF2 . The above equation implies that
for every � such that S(�) 6= 0, �� is the solution of 1+ za+ zb = 0.

From Lemma 4, and the definition of inverse Fourier transform, we
have

S(�) =
1; for � 2 QR

0; otherwise.

If S(�) 6= 0, i.e., � 2 QR, �� is always the solution of equation
zb+za+1 = 0. It is clear that ��� is the solution of zb+zb�a+1 = 0,
the reciprocal polynomial of zb+za+1 = 0. This means that for each
of the quadratic nonresidues �, �� is the solution of zb+zb�a+1 = 0,
since �1 is a quadratic nonresidue. Therefore, we have

(zb + za + 1)(zb + zb�a + 1)(z + 1) � 0 (mod zp � 1)

which is equivalent to

(zb + za + 1)(zb + zb�a + 1) = 1 + z + z2 + � � �+ zp�1:
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But the equation

(zb + za + 1)(zb + zb�a + 1) = z2b + zb+a + z2b�a

+ zb�a + zb + za + 1

=1 + z + z2 + � � �+ zp�1

only holds when p = 7 with (a; b) = (1; 3); (2; 3); (2; 6), and (4; 6).
That means that if m > 3, there is no integer pair (a; b) such that
s(t) + s(t+ a) + s(t+ b) = 0.

Lemma 6: Let m > 3 be an integer such that 2m � 1 = p �
3 (mod 4) is a prime. Let s(t) be the Legendre sequence of period
2m � 1 defined in (3). Then for nonzero a and b 6= c, there is no
integer triplet (a; b; c) that satisfies the relation

s(t)+ s(t+a)+ s(t+ b)+ s(t+ c)=0; 0�a; b; c �2m�1� 1 (6)

except for (a; 0; a) and (a; a; 0).
Proof: It is manifest that (6) holds when (a; b; c) = (a; 0; a) and

(a; b; c) = (a; a; 0). Let a < b < c be integers andS(�) be the Fourier
transform of s(t). Then by the similar argument in the proof of Lemma
5, we can say that 1+��a+��b+��c = 0 for all quadratic residues �,
and 1+��(c�a)+��(c�b)+��c = 0 for all quadratic nonresidues �.

Therefore, the equation

(zc+ zb+ za + 1)(zc + zc�b + zc�a + 1) � 0 (mod zp � 1)

holds, since z = 1 is the common solution of zc + zb + za + 1 = 0
and zc + zc�b + zc�a + 1 = 0. After careful scrutiny, we can deduce
that for the integers a < b < c, the above equation cannot hold.

Using Lemmas 5 and 6, we construct a set of cyclically distinct bi-
nary sequences of period 2m � 1 satisfying Property 3 from a binary
Legendre sequence.

Theorem 7: Let m be an integer such that m > 3 and 2m � 1 is
a prime. Let s(t) = l(�t) be a Legendre sequence of period 2m � 1,
where � is a primitive element inF2 . Define the new sequences si(t),
0 � i � 2m�1 � 1 of period 2m � 1 such that

si(t) =
s(t); if i = 0

s(t) + s(t+ i); if 1 � i � 2m�1 � 1.

Then the set of sequences si(t) satisfies Property 3.
Proof: From the balance and difference-balance properties of the

Legendre sequence, it is easy to see that si(t) is balanced. And from
the definition of si(t), it is also clear that the in-phase cross-correlation
Cs ;s (1) between si(t) and sj(t) always takes the value �1. Finally,
Lemmas 5 and 6 tell us that all si(t) are cyclically distinct. Thus the
set of sequences si(t) satisfies Property 3.

Using Theorems 2 and 7, we can construct a binary LCZ sequence
set with parameters (2n � 1; 2m�1; (2n � 1)=(2m � 1); 1) as in the
following theorem.

Theorem 8: Let n and m be integers such that m > 3, mjn, and
2m � 1 is a prime and T = (2n � 1)=(2m � 1). Let � be a primi-
tive element in F2 and � = �T be a primitive element in F2 . Let
l(�t) = s(t) be the Legendre sequence defined in (3) of period 2m�1.
Let h(x) from F2 to F2 be a 1-form function over F2 with bal-
ance and difference-balance property, i.e., either a 2m-arym-sequence,

a 2m-ary GMW sequence, or a 2m-ary generalized GMW sequence.
Then the sequence set S defined by

S = fvi(t) j 0 � t � 2n � 1; 0 � i � 2m�1 � 1g

where vi(t) is given as

vi(t) =
l(h(�t)); if i = 0

l(h(�t)) + l(h(�t+Ti)); if 1 � i � 2m�1 � 1

is a (2n � 1; 2m�1; (2n � 1)=(2m � 1); 1) LCZ sequence set.

No, Lee, Chung, Song, and Yang found the trace representation of
Legendre sequence as in the following theorem.

Theorem 9 ([10]): Let p = 2m � 1 be a prime for some integer
m � 3 and u be a primitive element in Zp, the set of integers mod p.
Let � be a primitive element in F2 such that

�1

i=0

trm1 (�u ) = 0:

Then the Legendre sequence s(t) in (3) can be rewritten as

s(t) =

�1

i=0

trm1 (�u t):

Using the above theorem, we can represent the new binary LCZ se-
quence set in the closed form as in the following corollary.

Corollary 10: Let m and n be integers such that m > 3, mjn, and
p = 2m � 1 be a prime. Let � be a primitive element in F2 and
h(x) = trnm(x). Then the sequence vi(t) defined in Theorem 8 can be
represented as

vi(t)=

�1

j=0

trm1 ([trnm(�t)]u ); for i = 0

�1

j=0

trm1 ([trnm(�t)]u )

+
�1

j=0

trm1 ([trnm(�t+T i)]u ); for 1� i�2m�1�1

where u is defined in Theorem 9.

IV. NEW OPTIMAL BINARY LCZ SEQUENCE SETS

In this section, for integers n and m such that (m + 1)jn, we con-
struct the optimal binary LCZ sequence set of period 2n � 1 by using
binary sequences of period 2m � 1 with ideal autocorrelation.

The following lemma can be easily stated without proof.

Lemma 11: Let m1(t) and m2(t) be two cyclically distinct p-ary
sequences with linear span L1 and L2, respectively. The maximum
run lengths of the symbol 0 and the symbol a, 1 � a � p� 1, for the
difference sequencem1(t)�m2(t) are less than or equal toL1+L2�1
and L1 + L2, respectively.
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Using two binary sequences with ideal autocorrelation, we can con-
struct a set of column sequences satisfying Property 3 as in the fol-
lowing theorem.

Theorem 12: : Let m1(t) and m2(t) be two binary sequences, not
necessarily distinct, of period 2m � 1 with ideal autocorrelation. Let
L1 and L2 be the linear spans of the sequences m1(t) and m2(t),
respectively. Assume that L1 + L2 + max(L1; L2) < 2m � 1, if
m1(t) and m2(t) are cyclically inequivalent and L1 = L2 < 2m�1, if
m1(t) and m2(t) are cyclically equivalent. Define the new sequences
si(t); 0 � i � 2m+1 � 2 of period 2m+1 � 1 such that

i) for 0 � i � 2m � 2

si(t) =

m1(t+ i); 0 � t � 2m � 2

0; t = 2m � 1

m2(t� 1� i); 2m � t � 2m+1 � 2:

(7)

ii) for 2m � 1 � i � 2m+1 � 3

si(t) =

m1(t+ i); 0 � t � 2m � 2

1; t = 2m � 1

m2(t� 1� i) + 1; 2m � t � 2m+1 � 2

(8)

and

s2 �2(t) =
0; 0 � t � 2m � 2

1; 2m � 1 � t � 2m+1 � 2.

Then the set of sequences si(t) satisfies Property 3.
Proof: From the definition of si(t), it is clear that si(t) is

balanced and it is also easy to see that the in-phase cross-correlation
Cs ;s (1) between si(t) and sj(t) takes the value �1.

Certainly the last sequence s2 �2(t) is cyclically distinct to every
other sequence. What we are going to show is that for any i; j, 0 �
i; j � 2m+1 � 3, and � , sj(t) = si(t + � ) implies that i = j and
� = 0.
Case 1) 0 � i; j � 2m � 3 and 0 � � � 2m � 2.

It is not difficult to see that si(t + � ) can be expressed as (9)
shown at the bottom of the page.
Assume sj(t) = si(t+ � ) for all t. From (7) and (9), we have

m1(t+ j) +m1(t+ i+ � ) = 0;

0�t�2m� 2� � (10)

m1(t+ j) +m2(t� 1� i+ � ) = 0;

2m � � � t � 2m � 2 (11)

m2(t� 1� j)+m2(t� 1�i+�)=0;

2m�t�2m+1�2�� (12)

m2(t�1� j) +m1(t+ i+ � � 1) =0;

2m+1 � 1� � � t � 2m+1�2: (13)

Left-hand side of (10) and (12) has 2m � 1 � � consecutive
zeros. Thus if � < 2m � max(L1; L2), i.e., 2m � 1 � � �
max(L1; L2), then we have j = i� � = i+ � , which further
tells us that i = j and � = 0. Note that in this case (11) and
(13) become meaningless. If � � 2m � max(L1; L2), then
left (11) and (13) does not hold unless m1(t) = m2(t) since
� � 1 � L1 + L2. Thus, satisfying (11) and (13) at the same

time means that m1(t) and m2(t) are cyclically equivalent and
i + j = � � 1 = �� , which further implies � = 2m�1. But
� = 2m�1 is not in the range � � 2m � max(L1; L2), since
max(L1; L2) < 2m�1.

Case 2) 0 � i; j � 2m � 3 and 2m � � � 2m+1 � 2.
Case 3) 2m � 1 � i; j � 2m+1 � 3 and 0 � � � 2m � 2.
Case 4) 2m � 1 � i; j � 2m+1 � 3 and 2m � � � 2m+1 � 2.
Case 5) 2m � 1 � i � 2m+1 � 3, 0 � j � 2m � 2, and 0 � � �

2m � 2.
Case 6) 2m � 1 � i � 2m+1 � 3, 0 � j � 2m � 2, and 2m � � �

2m+1 � 2.
Using the similar argument in Case 1), in each case, si(t) and
sj(t) is cyclically distinct when L1+L2+max(L1+L2) <
2m � 1.

Case 7) � = 2m � 1.
In this case, it is straightforward that si(t+ � ) 6= sj(t), 0 � i; j �

2m+1 � 3.
From the above seven cases, we proved that si(t) and sj(t) are cycli-

cally distinct for all i and j. Thus, we proved that the set of sequences
si(t) satisfies Property 3.

Example 13: m1(t) = m2(t) be binary m-sequences with period
23 � 1 = 7 given as

m1(t) = m2(t) = 1001011:

Then the sequences si(t) are given as

s0(t) = 100101101001011

s1(t) = 001011101100101

s2(t) = 010111001110010

s3(t) = 101110000111001

s4(t) = 011100101011100

s5(t) = 111001000101110

s6(t) = 110010100010111

s7(t) = 100101110110100

s8(t) = 001011110011010

s9(t) = 010111010001101

s10(t) = 101110011000110

s11(t) = 011100110100011

s12(t) = 111001011010001

s13(t) = 110010111101000

s14(t) = 111111110000000

which satisfy Property 3.

Using Theorem 2 and the column sequence sets in Theorem 12, we
can construct the binary LCZ sequence sets as in the following theorem.

Theorem 14: Let n and m be integers such that (m+1)jn and T =
(2n�1)=(2m+1�1). Let� be a primitive element inF2 and � = �T

be a primitive element in F2 . Let h(x) from F2 to F2 be a

si(t+ � ) =

m1(t+ i+ � ); 0 � t � 2m � 2� �

0; t = 2m � 1� �

m2(t� 1� i+ � ); 2m � � � t � 2m+1 � 2� �

m1(t+ i+ � � 1); 2m+1 � 1� � � t � 2m+1 � 2.

(9)
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1-form function overF2 with balance and difference-balance prop-
erty, i.e., either a 2m+1-ary m-sequence, a 2m+1-ary GMW sequence,
or a 2m+1-ary generalized GMW sequence. Let fi(�t) = si(t), where
si(t) is the binary sequence defined in Theorem 12. Then the sequence
set B defined by

B=fvi(t)=fi(h(�
t)) j 0 � i � 2m+1 � 2; 0 � t � 2n � 2g

is a binary LCZ sequence set with parameters (2n�1; 2m+1�1; T; 1).

Tang, Fan, and Matsufuji [6] derived the lower bound on LCZ se-
quences using the Welch bound [12].

Theorem 15 (Tang, Fan, and Matsufuji [6]): Let S be a set of LCZ
sequences with parameters (N;D;Z; �). Then,

DZ � 1 �
N � 1

1� �2=N
: (14)

Now we can check the optimality of our binary LCZ sequence set B.

Corollary 16: The binary LCZ sequence set B in Theorem 14
is optimal with respect to the Tang-Fan-Matsufuji bound given in
Theorem 15.

Proof: The proof is straightforward. By substitutingN = 2n�1,
D = 2m+1 � 1, and � = 1 in (14), we have

(2m+1 � 1)Z � 1 �
2n � 2

1� 1=(2n � 1)

and thus

Z �
2n

2m+1 � 1
:

Since Z is an integer, we have

Z �
2n

2m+1 � 1
=

2n � 1

2m+1 � 1
= T:

Clearly, B is optimal with respect to the Tang-Fan-Matsufuji bound.

V. NEW OPTIMAL p-ARY LCZ SEQUENCE SETS

In this section, for a prime p and integers n andm such thatmjn, we
propose a new construction method of the optimal p-ary LCZ sequence
set of period pn � 1 by using a p-ary sequence of period pm � 1 with
ideal autocorrelation.

In the next theorem, we construct a set of p-ary cyclically distinct
sequences of period pm�1 satisfying Property 3 from a p-ary sequence
with ideal autocorrelation.

Theorem 17: Let p be a prime and m(t) be a p-ary sequence with
ideal autocorrelation of periodM = pm�1. LetLm be the linear span
ofm(t) and assume that 3Lm�1 < M=2. Let fmi(t) j 0 � i �M�
1g be a set of cyclic shifts of m(t), such that mi(t) = m(t+ i); t =
0; 1; 2; . . . ;M�1. Define new sequences si(t); 0 � i �M�1, such
that

si(t) =
mi(M � 1� t); 0 � t �M �K � 1

mi(t+K); M �K � t �M � 1
(15)

for some integer K in the range 3Lm � 1 � K � M=2. Then the set
of p-ary sequences si(t); 0 � i � M � 1 satisfies Property 3.

Proof: From the definition of si(t), it is clear that all si(t) are
balanced and it is also easy to see that the in-phase cross-correlation
Cs ;s (1) between si(t) and sj(t) takes the value �1.

Now, what we have to show is that for any i; j, and � , sj(t) =
si(t+ � ) implies that i = j and � = 0. The sequence si(t) in (15) can
be rewritten as

si(t) =
m(M � 1� t+ i); 0 � t �M �K � 1

m(t+ i+K); M �K � t �M � 1.
(16)

It is not difficult to see that si(t+ � ) can be expressed as:
Case 1) 0 � � �M �K � 1.

See (17) shown at the bottom of the page.
Assume sj(t) = si(t+ � ) for all t. Then from (16) and (17),
we have

m(M � 1� t+ j) =m(M � 1� t� � + i)

0 � t �M �K � 1� � (18)

m(M � 1� t+ j) =m(t+ � + i+K)

M �K � � � t �M �K � 1 (19)

m(t+ j +K) =m(t+ � + i+K)

M �K � t �M � � � 1 (20)

m(t+ j +K) =m(M � 1� t� � + i)

M � � � t �M � 1: (21)

Here, we consider the following two cases depending on � .
When � � 2Lm � 1, both M �K � � and K � � are greater
than or equal to Lm since 3Lm � 1 � K �M=2. From (18),
we have

m(M � 1� t+ j)�m(M � 1� t� � + i) = 0 (22)

for consecutive M � K � � values of t. And similarly from
(20), we have

m(t+ j +K)�m(t+ � + i+K) = 0 (23)

for consecutiveK�� values of t. It is clear that the linear span
of m(t)�m(t+ k) for all k, 1 � k � pm � 2, is Lm. Since
both M �K � � and K � � are greater than or equal to Lm,
(22) and (23) imply that

j = i� � = i+ �

which further tells us that i = j and � = 0. And again in this
case, (19) and (21) vanish.
When � � 2Lm, (19) or (21) implies that some consecutive �
bits of two sequencesm(t) andm(�t) are identical, which is a
contradiction from Lemma 11 since the linear span of m(t)�
m(�t+ k) for all k, 0 � k � pm � 2, is at most 2Lm.

Case 2) � � M � T .
Similarly to Case 1), since both � �K and � �(M�K) are greater

than or equal to Lm, we can deduce i = j and � = 0.

Note that even if we limit the range of K as 3Lm� 1 � K �M=2
in Theorem 17 for the sake of the simplicity of the proof, in fact the

si(t+ � ) =

m(M � 1� t� � + i); 0 � t �M �K � 1� �

m(t+ � + i+K); M �K � � � t �M � � � 1

m(M � 1� t� � + i); M � � � t �M � 1.
(17)
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theorem holds for all K such that 3Lm � 1 � K �M � (3Lm� 1).
If 3Lm�1 > M=2, the above theorem cannot be directly applied. But
we can observe that the sequences si(t) in (15) constructed from the
binary m-sequence with Lm = 4 are all cyclically distinct for K = 7,
even though the condition 3Lm � 1 < M=2 is not met.

Using Theorem 2 and the column sequence set in Theorem 17, we
can construct the p-ary LCZ sequence sets as in the following theorem.

Theorem 18: Let p be a prime and n and m be integers such that
mjn. LetT = (pn�1)=(pm�1)andM = pm�1. Let� be a primitive
element in Fp and � = �T be a primitive element in Fp . Let h(x)
from Fp to Fp be a 1-form function over Fp with balance and
difference-balance property, i.e., a pm-ary unified sequence [9] which
includes an m-sequence, a GMW sequence, and a generalized GMW
sequence. Let fi(�t) = si(t), where si(t) is the sequence defined in
Theorem 17. Then the following sequence set P defined by

P = fvi(t) = fi(h(�
t)) j 0 � i � pm � 2; 0 � t � pn � 2g

is a LCZ sequence set with parameters (pn � 1; pm � 1; T; 1).

Corollary 19: The p-ary LCZ sequence set P in Theorem 18
is optimal with respect to the Tang-Fan-Matsufuji bound given in
Theorem 15.

Proof: The proof is straightforward. By substitutingN = pn�1,
D = pm � 1, and � = 1 in (14), we have

(pm � 1)Z � 1 �
pn � 2

1� 1=(pn � 1)

and thus

Z �
pn

pm � 1
:

Since Z is an integer, we have

Z �
pn

pm � 1
=

pn � 1

pm � 1
= T:

Clearly, P is optimal with respect to the Tang-Fan-Matsufuji bound.

VI. SOME THEOREMS OF LCZ SEQUENCES RELATED TO

HADAMARD MATRICES

In this section, we propose a construction method of a pn � pn

Hadamard matrix from an optimal LCZ sequence set with parameters
(pn � 1; pm � 1; (pn � 1)=(pm � 1); 1).

Theorem 20: Let p be a prime and n and m be integers such that
mjn. Let T = (pn � 1)=(pm � 1). Let S be the LCZ sequence set
with parameters (pn � 1; pm � 1; T; 1) given by

S = fvi(t) j 0 � i � pm � 2; 0 � t � pn � 2g:

Then we can construct the p-ary pn � pn Hadamard matrix HL as
follows:

HL = (hij)

where hij is given as

hij =
0; if i = 0 or j = 0

vbi=Tc(j � 1 + iT ); otherwise

and iT = (i � 1) mod T .

Proof: It is clear that the inner product between any two distinct
rows in HL can be represented as

1 +

p �2

t=0

!
v (t)�v (t+�)
p

where � is given as

0 � � � T � 1; if i 6= j

1 � � � T � 1; if i = j: (24)

From the definition of LCZ sequence set with parameters (pn �
1; pm � 1; T; 1), it is easy to see that the following equation holds for
� in (24)

p �2

t=0

!
v (t)�v (t+�)
p = �1:

Therefore, HL is a pn � pn Hadamard matrix.

Using the above theorem and the optimal LCZ sequence sets in The-
orems 14 and 18, we can construct Hadamard matrices as follows.

Corollary 21: Let n and m be integers such that (m + 1)jn and
T = (2n � 1)=(2m+1 � 1). Let vi(t) be the sequences defined in
Theorem 14 and iT = (i�1)mod T . Then we can construct a 2n�2n

Hadamard matrix HB as follows:

HB = (hij)

where hij is given as

hij =
0; if i = 0 or j = 0

vbi=Tc(j � 1 + iT ); otherwise.

Corollary 22: Let n and m be integers such that mjn and T =
(pn � 1)=(pm � 1). Let vi(t) be the sequence defined in Theorem 18
and iT = (i�1)mod T . Then we can construct a pn�pn generalized
Hadamard matrix HP as follows:

HP = (hij)

where hij is given as

hij =
0; if i = 0 or j = 0

vbi=Tc(j � 1 + iT ); otherwise.
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A Note on Numerical Semigroups

Maria Bras-Amorós

Abstract—This correspondence is a short extension to the previous ar-
ticle Bras-Amorós, 2004. In that work, some results were given on one-point
codes related to numerical semigroups. One of the crucial concepts in the
discussion was the so-called �-sequence of a semigroup. This sequence has
been used in the literature to derive bounds on the minimum distance as
well as for defining improvements on the dimension of existing codes. It
was proven in that work that the �-sequence of a semigroup uniquely de-
termines it. Here this result is extended to another object related to a semi-
group, the � operation. This operation has also been important in the lit-
erature for defining other classes of improved codes. It is also proven here
that, although the infinite set of values in the �-sequence (resp. the� values)
uniquely determines the associated semigroup, no finite part of it can deter-
mine it, because it is shared by infinitely many semigroups. In that reference
the proof of the fact that the �-sequence of a numerical semigroup uniquely
determines it is constructive. The result here presented shows that, however,
that construction can not be performed as an algorithm with finite input.

Index Terms—�-sequence, �-operation, improved one-point codes, nu-
merical semigroup, one-point codes.

I. INTRODUCTION

Let 0 denote the set of all nonnegative integers. A numerical semi-
group is a subset � of 0 containing 0, closed under summation and
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with 0n� being finite. The elements in � are called the nongaps of �
while the elements in 0n� are called the gaps of �. The enumeration
of � is the unique increasing bijective map � : 0 �! �. We use �i
for �(i).

A first object describing the addition behavior of a numerical semi-
group with enumeration � is the binary operation � on 0 defined by
i � j = ��1(�i + �j). A second object describing the addition be-
havior of a numerical semigroup � with enumeration � is the sequence
� = (�i)i2 , defined by �i = #fj 2 0 j �i � �j 2 �g.

Both the �-sequence and the � operation have important applica-
tions related to one-point codes. Let F= be a function field on the
finite field and let P be a rational point of F= . For a divisor D
of F= , let L(D) = f0g [ ff 2 F � j (f) + D 0g. Define
A =

m 0
L(mP ) and let � = f�vP (f) j f 2 A n f0gg =

f�vi j i 2 0g with �vi < �vi+1. It holds that vP (1) = 0 and
vP (fg) = vP (f) + vP (g) for all f , g 2 A. Hence, � is a numer-
ical semigroup. It is called the Weierstrass semigroup at P . Suppose
moreover that P1; . . . ; Pn are pairwise distinct rational points of F=
which are different from P and let ' be the map A ! n such that
f 7! (f(P1); . . . ; f(Pn)). For m 0 the one-point code of order m
associated to P and P1; . . . ; Pn is defined as Cm = '(L(�mP ))?.

A first application of the sequence � is on the order bound on the
minimum distance of the codeCm, defined as dORD(Cm) = minf�i j
i > mg. It satisfies dC dORD(Cm), where dC is the min-
imum distance of the code Cm [1]–[3]. A second application is on
the definition of improved codes. Let ffi 2 A j i 2 0g be such
that vP (fi) = vi. Given a design minimum distance � 2 0, de-
fine C(�) = ['(fi) j �i < �]?, where [u1; . . . ; un] is the -vector
space spanned by u1; . . . ; un. This is a code improving the dimension
of one-point codes while keeping the same design minimum distance
[4]. By just guaranteeing correction of the so-called generic errors [5]
we can define new codes which have still less parity-checks. Those
codes are defined by means of the � operation as C(�) = ['(fi) j i 62
fa � b j a; b b ��1

2
cg]? [6].

Notice that in both applications of the sequence � its increasing-
ness is very important. In [7] we prove that the unique numerical semi-
group for which � is strictly increasing is 0 while the only numerical
semigroups for which it is nondecreasing are ordinary numerical semi-
groups, that is, numerical semigroups whose set of gaps is f1; 2; . . . ; gg
for some positive integer g. This gives a characterization of a class of
semigroups by means of a property on the sequence � . In the same ref-
erence we further showed that a numerical semigroup can be uniquely
determined by its associated sequence � .

Here we show that, similarly, the� operation determines completely
the numerical semigroup. However, we also prove that any finite set
of �-values is shared by an infinite number of semigroups. The same
thing will happen for the �-sequence. Thus, the construction given in
[7] to determine a numerical semigroup from its �-sequence can only
be performed if we know the behavior of the infinitely many values in
the �-sequence.

II. THE �-SEQUENCE

Recall that for a numerical semigroup � with enumeration � the
sequence � = (�i)i2 is defined by �i = #fj 2 0 j �i��j 2 �g.

Example 2.1: For the numerical semigroup

f0; 4; 5; 8; 9; 10; 12; 13; 14; 15; 16;

17; 18; 19; 20; 21; 22; 23; 24; 25 . . .g

the first values of � are

1; 2; 2; 3; 4; 3; 4; 6; 6; 4; 5; 8; 9; 8; 9; 10; 12; 12; 13; 14; . . . :


