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A New Low-Complexity PTS Scheme
Based on Successive Local Search Using Sequences

Young-Jeon Cho, Jong-Seon No, Fellow, IEEE, and Dong-Joon Shin, Senior Member, IEEE

Abstract—A new partial transmit sequence (PTS) scheme with
low computational complexity is proposed, where two search
steps are taken to find a subset of phase rotating vectors
showing good peak-to-average power ratio (PAPR) reduction
performance. In the first step, sequences with low correlation are
used as phase rotating vectors for PTS scheme, which are called
the initial phase vectors. In the second step, local search is per-
formed based on the initial phase vectors to find additional phase
rotating vectors which show good PAPR reduction performance.
Numerical analysis shows that the proposed PTS scheme achieves
better PAPR reduction performance with significantly reduced
computational complexity than the existing low–complexity PTS
schemes.

Index Terms—Kasami sequences, OFDM, PAPR, PTS, quater-
nary sequences.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has received considerable attention for its

bandwidth efficiency and robustness against frequency-
selective fading channels. An inverse fast Fourier transform
(IFFT) used for the baseband modulation simplifies the
transceiver design and provides an efficient hardware
implementation. Thus, it has been employed in various
broadband communication systems such as IEEE 802.11
wireless local area networks. However, one major drawback
of the OFDM system is its high peak-to-average power ratio
(PAPR) of the transmitted signal in time domain, which
brings on the OFDM signal distortion in the nonlinear region
of high power amplifier (HPA).

In order to alleviate the PAPR problem of OFDM signals,
many PAPR reduction techniques have been proposed [1].
Among them, the partial transmit sequence (PTS) scheme
can effectively reduce the PAPR of OFDM signals without
distorting them, but it requires an exhaustive search over all
the phase rotating vectors, which results in large computational
complexity [2].

In this paper, a new low-complexity PTS scheme taking
two search steps is proposed, which finds a good subset of
phase rotating vectors. Through numerical analysis, the PAPR
reduction performance and the computational complexity of
the proposed PTS scheme are compared with those of the
existing low-complexity PTS schemes.
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II. SYSTEM MODEL AND CONVENTIONAL PTS SCHEME

Let X be an input symbol sequence of length N in OFDM
system, that is, X = [X0, X1, · · · , XN−1]

T . An OFDM signal
for X as a sampled complex baseband signal is obtained by
applying IFFT to X as

xn =
1√
N

N−1∑

k=0

Xke
j2πkn/N , 0 ≤ n ≤ N − 1 (1)

where Xk, k = 0, 1, · · · , N − 1, are input symbols modu-
lated by MPSK or QAM. The PAPR of an OFDM signal
x = [x0, x1, · · · , xN−1]

T is defined as

PAPR =
max0≤n≤N−1 |xn|2

E[|x|2] (2)

where E[·] denotes the expectation.
In the conventional PTS scheme, an input symbol se-

quence X is partitioned into M disjoint symbol subblocks
Xm = [Xm,0, Xm,1, · · · , Xm,N−1]

T , 0 ≤ m ≤ M − 1,
such that X =

∑M−1
m=0 Xm. The time domain signal vector

xm = [xm,0, xm,1, · · · , xm,N−1]
T is generated by applying

IFFT to the symbol subblock Xm. Next, each xm is inde-
pendently rotated by multiplying phase rotating factor bim ∈
{ej2πl/W |l = 0, 1, · · · ,W − 1}, where W is the number of
phase rotating factors. The phase rotating factors bim constitute
a phase rotating vector bi = [bi0, b

i
1, · · · , biM−1]. Then the i-th

alternative OFDM signal sequence x(i) is generated by

x(i) =
M−1∑

m=0

bimxm, i = 0, 1, · · · , U − 1 (3)

where U is the number of alternative OFDM signal sequences.
The objective of the conventional PTS scheme is to search

for the optimal phase rotating vector that yields the alternative
OFDM signal sequence with the minimum PAPR. Finally, the
alternative OFDM signal sequence with the minimum PAPR
is transmitted with the side information on the index of the
optimal phase rotating vector. Note that the total number of
alternative OFDM signal sequences in the conventional PTS
scheme is U = WM−1, where the first phase rotating factor
can be fixed without any performance loss.

III. A NEW PTS SCHEME BASED ON SEQUENCES WITH

GOOD CORRELATION

In this section, a new PTS scheme with two search steps
is proposed, where the initial phase vectors are generated by
using sequences with good correlation property in the first
step and then additional phase rotating vectors are generated
by changing one symbol of the initial phase vectors in the
second step.
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A. First Step : Initial Phase Vectors

Kasami sequences [3] and quaternary sequences of Family
A [4] are considered as initial phase vectors for the pro-
posed PTS scheme. Kasami sequences are important binary
sequences having very low cross-correlation values, which are
generated by taking the modulo-2 sum of binary m-sequence
and its decimated sequences [3]. There are two different sets of
Kasami sequences, a large set and a small set. In this paper,
we use a small set of Kasami sequences having an optimal
correlation property.

To generate a small set of Kasami sequences, we begin with
an m-sequence μ of period 2r − 1 for even r and a shorter-
period sequence μ

′
obtained by decimating μ by 2r/2 + 1.

Note that the resulting sequence μ
′

is an m-sequence of period
2r/2−1. Then a small set of Kasami sequences is generated by
taking the modulo-2 sum of μ and all the cyclically shifted
sequences of μ

′
, which results in 2r/2 binary sequences of

period 2r − 1. The total number of Kasami sequences and
their all cyclically shifted sequences is 2r/2(2r − 1). Thus,
the total number NK of phase rotating vectors selected from
them should satisfy

NK ≤ 2r/2(2r − 1). (4)

These NK binary sequences are used as initial phase vectors
for the proposed PTS scheme, where the alphabet size for the
phase rotating factors is W = 2.

A family of quaternary sequences over Z4 with optimal
correlation property, called Family A, has been proposed in
[4], which consists of 2r + 1 quaternary sequences of period
2r − 1. Clearly, the total number of quaternary sequences of
Family A and their all cyclically shifted sequences is (2r +
1)(2r−1). Then, the total number NQ of initial phase vectors
selected from them should satisfy

NQ ≤ (2r + 1)(2r − 1). (5)

For example, the Kasami and quaternary sequences of
period 15 can be used as the initial phase vectors for the
proposed PTS scheme with M = 16, where the phase rotating
factor bi0 for the first subblock is fixed to one. In this case, the
maximum number of binary initial phase vectors of length 15
is NK = 60 from (4), and the maximum number of quaternary
initial phase vectors of length 15 is NQ = 225 from (5).
However, it is not guaranteed to find a good solution for
the proposed PTS scheme only by using these initial phase
vectors. Therefore, in the second step, one symbol of each
initial phase vector is further changed to generate additional
phase rotating vectors. Note that, by using sequences with low
correlation as initial phase vectors, the search in the second
step becomes more efficient.

B. Second Step : Local Search

Suppose that P0 initial phase vectors are generated in the
first step, where P0 = NK or NQ. Then P1 vectors giving
the smallest PAPRs are selected from these P0 initial phase
vectors, 0 < P1 ≤ P0, which are used to generate additional
phase rotating vectors by changing one symbol from each of
them, called local search.

TABLE I
Pm VALUES FOR 900 PHASE ROTATING VECTORS IN THE PROPOSED PTS

SCHEME USING KASAMI SEQUENCES WHEN M = 16

P0 P1(W − 1) P2(W − 1) P3(W − 1)
60 60 × 1 60× 1 60× 1

P4(W − 1) P5(W − 1) P6(W − 1) P7(W − 1)
60× 1 60 × 1 60× 1 60× 1

P8(W − 1) P9(W − 1) P10(W − 1) P11(W − 1)
60× 1 60 × 1 60× 1 60× 1

P12(W − 1) P13(W − 1) P14(W − 1) P15(W − 1)
60× 1 60 × 1 30× 1 30× 1

This local search will be explained by using an example.
Assume that the phase rotating factor for the second subblock
of the alternative OFDM signal sequence x(i) in (3) is changed
from bi1 to bi

′
1 , where bi

′
1 can take any phase rotating factor

except bi1. Then the additional alternative OFDM signal se-
quence x(i′) can be easily obtained as

x(i′) = x(i) + (bi
′
1 − bi1)x1 (6)

without summing all xm’s weighted by a new phase rotating
vector bi′ as in (3). Compared with (3), the computational
complexity to obtain additional alternative OFDM signal
sequences in (6) can be substantially reduced. The phase
rotating factor for the second subblock of other alternative
OFDM signal sequence can be changed in the same fashion to
generate additional alternative OFDM signal sequences. Then,
P1(W − 1) additional phase rotating vectors are generated by
changing the phase rotating factor for the second subblock.
After calculating PAPRs of these P1(W − 1) alternative
OFDM signal sequences and comparing PAPRs of total P1W
alternative OFDM signal sequences, we can select P2 phase
rotating vectors giving the smallest PAPRs.

Similar to the second block case, P2(W − 1) additional
phase rotating vectors are generated from these P2 phase
rotating vectors by changing the phase rotating factor for the
third subblock, and the same comparison and selection are
performed. This procedure continues up to the last subblock
and the total number T of phase rotating vectors in the
proposed PTS scheme becomes

T = P0 + (W − 1)

M−1∑

m=1

Pm. (7)

Extensive simulation can be performed to find Pm for good
PAPR reduction performance. As an example, for the case of
M = 16, the number Pm(W − 1) of additional phase rotating
vectors generated by local search for each subblock is listed
in Table I, where a small set of Kasami sequences of length
15 and local search are used to select T = 900 phase rotating
vectors out of 215 = 32768 binary vectors.

IV. COMPUTATIONAL COMPLEXITY AND SIMULATION

RESULTS

A. Comparison of Computational Complexity

The computational complexity of PTS scheme is determined
by the following three parts: a) M IFFTs for M subblocks;
b) generation of U alternative OFDM signal sequences; c)
computation and comparison of PAPRs of U alternative
OFDM signal sequences. In general, when the number M
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TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITY OF THE PROPOSED PTS

SCHEME AND OTHER PTS SCHEMES (PERCENTAGE IS COMPARED FOR
M = 16, L = 4, W = 2, N = 256, A = 16253 AND T = 900)

PTS Schemes No. of Complex Multiplications Percentage

Conventional PTS (M − 1)LNWM−1 100%

Optimal Search (M − 1)LNA 49.6%

Parallel TS–PTS (M − 1)LNT 2.75%

ABC–PTS (M − 1)LNT 2.75%

Proposed PTS
(M − 1)LNP0

+LN(W − 1)
∑M−1

m=1 Pm
0.42%

of subblocks is fixed, the computational complexity for the
part a) is also fixed, and the part b) is mainly considered for
reducing the computational complexity of the PTS scheme,
while the complexity of part c) is negligible.

In order to reduce the computational complexity, an optimal
search has been proposed in [5], where the computational
complexity is reduced by restricting searching among the alter-
native OFDM signal sequences inside a sphere by using sphere
decoding algorithm. Recently, combinatorial optimization al-
gorithms including artificial bee colony algorithm (ABC–PTS)
[6] and parallel tabu search algorithm (parallel TS–PTS) [7]
have been used to efficiently search a good subset of phase
rotating vectors for the PTS scheme to further reduce the
complexity of the part b).

Table II compares the computational complexity of the
conventional PTS, optimal search, parallel TS–PTS, ABC–
PTS, and the proposed PTS scheme for M = 16, L = 4,
W = 2, N = 256, and T = 900, where L is the oversampling
factor. Since the complexity due to the complex additions
shows the same tendency, only the complex multiplications
for generating alternative OFDM signal sequences in the part
b) are considered in Table II.

The optimal search algorithm in [8] searchs the alternative
OFDM signal sequences inside a sphere corresponding to
γ2 = 6.8, which results in generating A = 16253 alternative
OFDM signal sequences on average. Note that while the con-
ventional PTS and optimal search generate WM−1 = 215 =
32768 and A = 16253 alternative OFDM signal sequences,
respectively, the other low–complexity PTS schemes generate
T = 900 alternative OFDM signal sequences. Table II shows
that, compared with the number of complex multiplications
required by the conventional PTS, the optimal search requires
49.6% of complexity, and each of parallel TS–PTS and ABC–
PTS requires 2.75% of complexity, whereas the proposed PTS
scheme requires only 0.42% of complexity by using Pm in
Table I. Clearly, the proposed PTS scheme shows the lowest
computational complexity among other low–complexity PTS
schemes.

In the next subsection, it will be shown that the proposed
PTS scheme can give almost the same PAPR reduction per-
formance as the conventional PTS scheme.

B. Simulation Results

Fig. 1 compares the PAPR reduction performance of the
conventional PTS scheme, the proposed PTS scheme with
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Fig. 1. Comparison of PAPR reduction performance of the conventional
PTS and the proposed PTS scheme using various sequences with M = 16,
L = 4, N = 256, and 16QAM.
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Fig. 2. Comparison of PAPR reduction performance of various PTS schemes
with M = 16, L = 4, T = 900, N = 256, and 16QAM.

Kasami sequences (K–PTS), and the proposed PTS scheme
with quaternary sequences of Family A (Q–PTS) for M = 16,
L = 4, N = 256, and 16QAM. Fig. 1 shows that Q–PTS
can outperform K–PTS. Note that Q–PTS with T = 1200
shows almost the same PAPR reduction performance as the
conventional PTS with W = 2 and U = 32768.

Fig. 2 compares the PAPR reduction performance of the
conventional PTS, optimal search, ABC-PTS, and parallel TS-
PTS for W = 2, random search (RS) for W = 2 and 4, and
the proposed K–PTS and Q–PTS. An OFDM system with
M = 16, L = 4, N = 256, and 16QAM is considered.
For optimal search, A = 16253 alternative OFDM signal
sequences are generated and for other low–complexity PTS
schemes, T = 900 alternative OFDM signal sequences are
generated. It can be seen that the PAPRs of the random search
at CCDF = 10−3 for W = 2 and W = 4 are the same
7.15dB. Meanwhile, the PAPRs of ABC–PTS, parallel TS–
PTS, K–PTS, and Q–PTS are 7.02dB, 6.85dB, 6.9dB, and
6.72dB at CCDF = 10−3, respectively. As expected, the
optimal search shows identical PAPR reduction performance
with the conventional PTS scheme. Compared with other PTS
schemes, the proposed PTS scheme shows similar or better



CHO et al.: A NEW LOW-COMPLEXITY PTS SCHEME BASED ON SUCCESSIVE LOCAL SEARCH USING SEQUENCES 1473

PAPR reduction performance with much lower computational
complexity as given in Table II.

V. CONCLUSIONS

In this paper, a new two-step search algorithm for PTS
scheme is proposed to reduce the computational complexity. In
the first step, sequences with good correlation property such
as Kasami and quaternary sequences are used as the initial
phase vectors. In the second step, by using the initial phase
vectors, local search is performed for further searching the
phase rotating vectors with very low computational complex-
ity. Numerical analysis shows that the proposed PTS scheme
can achieve almost the same PAPR reduction performance as
the conventional PTS scheme with much lower computational
complexity than other low–complexity PTS schemes.
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