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also place severe constraints on output power and therefore 
coverage in the downlink.

In the past, there have been many efforts to deal with the 
PAPR problem resulting in numerous papers and several over-
view articles, e.g., [2]–[4]. However, with the upcoming novel 
systems, new challenges emerge that have been rarely addressed 
so far: 1) the envisioned boost in network energy efficiency (e.g., 
at least by a factor of 1,000 in the 
Green Touch consortium) will 
tighten the requirements on the 
component level so that the effi-
ciency gap with respect to single-
carr ier  transmission must 
considerably diminish; 2) multi-
ple-input multiple-output (MIMO) 
multiplicates the problem due to 
simultaneous control of parallel transmit signals particularly 
when considering a huge number of transmit antennas; and 3) 
multiuser (MU) (and multipoint) systems put additional side 
constraints on the parallel transmit signals that are difficult to 
implement on top of conventional approaches. Furthermore, 
many of the existing methods are not compatible with relevant 
standards and/or their prospective performance capabilities are 
not satisfactory. Yet, it is quite safe to say that no standard solu-
tion is available.

Energy efficiency in mobile communication 
networks: A driving source for innovation
In this article, we will argue that, in light of these challenges, 
the PAPR metric itself has to be carefully reviewed within a 
much broader scope, overthrowing some of the common 
understanding and results. New metrics become more impor-
tant since they enable the system designer to precisely adjust 
the algorithms to meet some given performance indicator. It is 
expected that such a design approach will no longer be treated 
like an isolated problem on the physical layer but will affect 
the design parameters on higher layers as well (e.g., resource 
allocation). For example, it has been discussed in [1] that from 
a ICT perspective, the system throughput should be related to 
input power rather than output power. To capture this para-
digm on a HPA power efficiency level, different metrics are 
currently used, including total degradation and average dis-
tortion power. However, with respect to algorithm design, all 
these metrics are solely reflected by the standard PAPR figure 
of merit. This argument can also be extended to other situa-
tions: it has been recently shown in [5] that, if the only con-
cern is average distortion power (instead of peak power), then 
a much less conservative design is possible compared to con-
ventional design rules in OFDM transmission. Remarkably, 
such performance limits can be achieved efficiently using 
derandomization algorithms, establishing therefore a new 
powerful tool within the context of the PAPR problem. It is a 
major aim of this article to review and collect exactly those 
elements in the current literature that we believe represent 
the core of a more general theory.

Besides this point of view, it is interesting to apply new sig-
nal processing and mathematical concepts to the PAPR prob-
lem. Compressed sensing [6], [7] is a new framework capturing 
sparsity in signals beyond Shannon’s sampling theorem and has 
attracted a lot of attention in recent years. It is based on the 
observation that, for a sparse signal, a small number of linear 
projections (measurements) contain enough information for its 

recovery. Compressed sensing can 
be applied to the PAPR problem 
because sparsity frequently appears 
in the clipped portions of the dis-
torted OFDM signals. There are 
currently many research efforts 
in this direction, but some chal-
lenges still remain, such as the 
degraded recovery performance 

in noisy environment. The adoption of related mathematical 
concepts such as Banach space geometry [8], [9] complement 
this discussion. It is outlined that these theoretically deeply 
rooted concepts can help to understand some of the funda-
mental limits as well as to develop new algorithmic solutions 
for the PAPR problem.

To summarize, there is clearly a need for a fresh look at the 
PAPR problem under the general umbrella of the metrics theme 
discussed previously which will open up new research strands 
not yet explored. In this article, we are going to address and dis-
cuss some of the fundamentals, challenges, latest trends, and 
potential solutions that originate from this perspective and that 
we believe to be important to come to an innovative break-
through for this long-lasting problem.

NOTATIONS
We recall the following standard notations: the frequency-
domain OFDM symbol for each antenna (Nt in total) consists of 
N subcarriers. The multiplexed transmit symbols C ,m n (carrying 
information and/or control data) are drawn from some common 
quadrature amplitude modulation/phase-shift keying (QAM/
PSK) signal constellation and collected in the space-frequency 
codeword : [ , ..., ],C C CN1 t=  where : [ , ..., ]C C C, ,m m m N1 T=  is the 
transmit sequence of antenna m. In case of a single antenna we 
write :C C ,n n1=  and, correspondingly, .: [ ,..., ]C C C Cm

T
1 1= =  

Given the inverse discrete Fourier transform (IDFT) matrix 
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r  the I-times oversampled discrete-

time OFDM transmit symbols in the equivalent complex base-
band at antenna m are given by .FCsm m=  The average power 
of this signal might be normalized to one. We define the PAPR 
of the transmit signal at antenna m as

	 ( ) : .s sPAPR m m
2= � 	 (1)

Comment on oversampling
Please note that PAPR of the continuous-time passband signal 
differs roughly by 3 dB. Clearly, there is also still some over-
shooting between the samples, but, due to sufficiently high 
oversampling, the effect is negligible. The tradeoff between 
overshooting and oversampling is one of the few subproblems 
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in OFDM transmission that is well understood. The best known 
results that hold even in the strict band-limited case are given 
in [10], where overshooting is proved to be below / /cos I1 2r� �.

The design challenge
In OFDM transmission, many subcarriers (constructively or 
destructively) add up at a time that causes large fluctuations of the 
signal envelope; a transmission that is free from any distortion 
requires linear operation of HPA over a range N times the average 
power. As practical values of subcarriers are large, these high 
dynamics afford HPA operation well below saturation so that most 
of the supply power is wasted with deleterious effect on either bat-
tery life time in mobile applications (uplink) or energy cost of net-
work operation (downlink). In practice, these values are not 
tolerable, and from a technology viewpoint it is also challenging to 
provide such a large linear range. Hence, the HPA output signal is 
inevitably cut off at some point relative to the average 

power (clipping level) leading to in-band 
distortion in the form of intermodulation 
terms and spectral regrowth into adjacent 
channels. The effect is illustrated in Fig-
ure 1, where the distorted OFDM signal 
and corresponding impact on the signal 
points are depicted.

The PAPR problem brings up several 
challenges for the system designer: one 
challenge is to adjust HPA parameters 
(HPA backoff, digital predistortion) in 
some specific way so that power effi-
ciency is traded against nonlinear distor-
tion, which effects the data transmission 
on a global scale. How to capture this 
tradeoff by a suitable metric on a compo-
nent level is not clear yet. Special HPA 
architectures such as Doherty [13] and 
others can help to improve on this trad-
eoff. We also mention that other design 
constraints such as costs might prevent 
specific architectures [14].

A second challenge is to process the 
baseband signal by peak power reduction 
algorithms in such a way that the key 
figures of merit in the aforementioned 
tradeoff are improved. This alternating 
procedure makes it apparent that the 
PAPR problem involves joint optimiza-
tion of HPA, predistortion, and a signal 
processing unit. This interplay has only 
been marginally addressed so far, let 
alone in the context of multiuser sys-
tems equipped with multiple antennas 
such as LTE-A.

In the following, we discuss some 
potential metrics that can be used in the 
optimization.

The right paradigm? Alternative  
metrics for PAPR
Classically, in OFDM transmission, the PAPR of the transmit 
signal is analyzed and minimized by applying transmitter-side 
algorithms. Meanwhile, it has been recognized that it may be rea-
sonable to study other parameters as well. For example, when 
aiming at minimizing the energy consumption of the transmitter 
including the analog front end or when operating a low-cost, low-
precision power amplifier—sometimes referred to as dirty RF 
[14]—potentially other signal properties need to be controlled.

Let us present some illustrative examples first. Suppose we 
are interested in the clipped energy instead of the PAPR (we give 
some justification for this in terms of capacity below). Naturally, 
since the total energy is approximately one, the clipped energy 
is finite as well, but when N increases, the required clipping 
level for asymptotically zero clipping energy might be of 
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[Fig1]  An illustration of distorted OFDM signal (in time domain, clipping level = 3.5 dB) 
and corresponding impact on the subcarrier signaling points (in frequency domain): the 
distortion signal is typically a sequence of clips with clip duration , , ....t t1 2  The SDR metric 
then relates the mean useful signal energy to the mean distortion energy while EVM 
collects the mean of sum of squared errors , , ...d d1 2  in the data sequence (due to the very 
same time domain distortion). In case of Nyquist sampling, both are actually equal (subject 
to a scaling factor) [11], [12]. (Figure courtesy of Gerhard Wunder.)
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which describes the statistical average after an upcrossing of the 
Gaussian process. It is seen that simulation and analysis match 
very well [23]. On the other hand, metrics such as EVM [12] and 
SER [25] have been shown not to match well.

Approaching the log(N) barrier: Derandomization
In this section, we establish several fundamental principles for 
the PAPR problem. We believe that all of them actually connect 
to a broader theory general enough to capture alternative met-
rics as well, and this will open the door for new, provably more 
efficient algorithms.

THE LDP
By analyzing PAPR of multicarrier signals, one faces a funda-
mental barrier that to overcome seems quite challenging: the 

( )log N  barrier (recall that N is the number of subcarriers). In 
fact, it is an exercise in large deviations to show that multicar-
rier signals with statistically independent subcarriers have PAPR 
of ( )log N  in a probabilistic sense [26]–[28]. This means that 
with very high probability, the PAPR lies in an open, arbitrarily 
small interval containing ( ):log N  this is what we call the large 
deviation principle (LDP).

Implicitly, LDP affects the performance of many peak power 
control schemes. The LDP has been known since long in the 
context of random polynomials but in the OFDM context, the 
most general form is due to [29] where it is shown that as long 
as N is large enough and the subcarriers are independent that 
the following inequality is true:

	 ( )
( )
( )

Pr log
log

log log
N

N
N

PAPR 2 c-
6 @

� �

	
( )

.
log N

1
2 2

1�
c-6 @

	 (2)

Here, /1 42c  is some design parameter that trades off prob-
ability decay over deviation from ( ) .log N  While the analysis is 

tricky when it comes to show that PAPR is not below ( )log N  
with high probability, it is a surprisingly easy task to show the 
converse: standard inequalities (such as Chernoff bounds) or 
any other Markov-style bound do the job. Some can be exploited 
for algorithm design as shown later in this section.

The inequality states that PAPR concentrates more and more 
around the value ( ),log N  which therefore establishes an impor-
tant theoretical scaling law. The proof is technical but the result 
might be surprising since 1) the factor before the logarithmic 
term is exactly unity and 2) the scaling law differs from the well-
known law of iterated logarithm, which would suggest only 
doubly logarithmic scaling.

The LDP contains some valuable illustrative aspects that we 
are going to reveal now. The LDP in (2) is somewhat unaccessi-
ble and shall be rewritten in the more convenient form 

	 ( ( )) ( ) ( ) ,log log log logF x N O N xc = + - -� �66 @ @ 	 (3)

where we used the order notation ( )O �  and the definition 
: , .minx x0=- � �6 @  Disregarding the order term ( ) ,log logO N� �6 @  

we have the interpretation that the probability decreases linearly 
on a logarithmic scale from some cutoff point ( ),log N  which is 
illustrated in Figure 3. The proximity to filter design terminology 
is intended and it makes obvious sense to speak of a passband 
and a stopband in the figure. Comparing this to the standard 
analysis where statistical independence and Nyquist sampling is 
assumed gives

	 ( ) ( ) ,log logF x N xc = - -� � 6 @ 	 (4)

where the order term is missing. Hence, we conclude that a 
careful non-Gaussian analysis for continuous-time OFDM sig-
nals entails an error of at most ( ) .log logO N� �6 @

The LDP is very useful for assessing the performance of 
peak-power control schemes. Before we show this we might ask 
why this concentration happens? Let , , ...,C C CN1 2  be a (data) 
sequence of independent random variables; when estimating 
PAPR without a priori information the expectation is the best 
possible choice. Using successive knowledge of already fixed 
data, we have the following estimations:

	 ( )sy PAPRE0 = " ,	 (5)

	 ( ) |sy CPAPRE1 1= " ,	 (6)

	 ( ) | ,sy C CPAPRE2 1 2= � �	 (7)

	 …

	 ( ) | , , ..., .y s C C CPAPREN N1 2= " , 	 (8)

It can be shown that this process establishes a Martingale with 
bounded increments y yi i 1- -  from which it follows (see [30]) 
measure concentration of the PAPR around its average via the 
Azuma–Hoeffding inequality or McDiarmid’s inequality. 
Another approach used in [30] for proving measure concentra-
tion of the PAPR around its median is based on the convex-hull 
distance inequality of Talagrand. The tails of the concentration 
inequalities are even exponential then. Let us now apply the 
LDP within the context of peak power control.
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[Fig3]  An illustration of the virtue of the LDP is given:  
(a) derandomization, (b) SLM, and (c) uncoded data.
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MUlTIplE SIGNAl REpRESENTATION  
ANd pARTITIONING
The basic principle for most of the peak power control schemes 
is multiple signal representation, which roots in classical meth-
ods such as selected mapping (SLM) [31] and partial transmit 
sequences (PTS) [32], [33]. The idea is simple: instead of trans-
mitting the original OFDM data frame, multiple redundant can-
didates are generated and the “best” candidate is singled out for 
transmission. By using suitable transforms or mappings, the 
main goal is to achieve statistical independence between the 
candidates’ metrics. Clearly, instead of PAPR, alternative metrics 
can also be used in the selection process [19], [20]. SLM and 
PTS are similar; the difference between SLM and PTS is that the 
mappings are applied to a subset of the data frame.

For SLM, many transforms have been proposed: in the origi-
nal approach, the data frame is element-wise multiplied by ran-
dom phases; other popular approaches include binary random 
scrambling and permutation of the data (see references in [19]; 
here is also where the transmission of side information is dis-
cussed). Similar for PTS, random phases have been used as well. 
While a full search is typically carried out, efficient algorithms 
to find the phases have been proposed. An exhaustive list can be 
found in [2].

SLM can be analyzed within the context of LDP. The trans-
forms define U alternatives each assumed with independent 
PAPR. Clearly this independence assumption is crucial: it might 
be argued that it has to hold for the PAPR only but the model 
clearly fails when the number of alternatives is large. By exploit-
ing the LDP we have simply then

	 ( ) ( )log logF x U N xc = - -� � 6 @ 	 (9)

so that the decay is U times faster as depicted in Figure 3. A similar 
analysis can be carried out when the selection is done, directed, or 
extended over the time domain [19]. Note that, in principle, PTS 
can be analyzed as well; however, since the transform is on subsets 
of the data, the independence assumption is far more critical. 
Another main problem so far is that side information is treated 
separately and not within the same communication model.

A better model is complete partitioning of the set of transmit 
sequences. The idea is illustrated in Figure 4. Suppose that the 
transmit sequence belongs to some set that is partitioned into 
many cells, all of them containing the same information. Note 
that if the actual cell selection is required at the receiver for 
decoding, side information is generated. This side information 
belongs in our general model to the transmit sequence itself and 
must be specially protected. This can be done via an embedded 
code that is decoded before or after the actual information decod-
ing procedure [2]. Let us mark the subsets where PAPR is below 
some threshold: the reasoning is that by the mapping of code-
words from one cell into another, sets with larger PAPR should be 
mapped to a marked subset by at least one mapping that will 
ensure peak power below the threshold. Obviously, the definition 
of such a mapping will determine the performance of the scheme.

One of the simplest examples is when the data is over some 
constellation and side information is encoded into a sequence of 

binary phase-shift keying (BPSK) symbols: each sequence 
defines a specific BPSK vector determining the sign vector. 
Both modified information and side information sequence 
define the transmitted codeword. This method is called 
sequence balancing [34]. It is characteristic for this method that 
correlation is inserted in the stream by using suitable binary 
codes. We will call this the binary correlation model. Note, if the 
side information is purely redundant, the method reduces to 
tone reservation [4]. Moreover, if the selection defines phase 
relations between partial sequences then it is a version of PTS 
[32]. A related approach is Trellis shaping [2], [35].

Sequence balancing using binary codes can achieve (even 
though easily generalized) already a sufficient fraction of the 
theoretically possible performance gain: the main required prop-
erty of the set of binary vectors is their ability of as many sign 
changes as possible over any subvector, which is called the 
strength of the code [34]. Many binary codes have this property 
and are thus suited for this procedure. The strength is related to 
the dual distance. It can be shown that if the strength grows as 
log N� � then PAPR is below log N� � for large N. Unfortunately, 
similar to SLM and PTS, the number of candidates grows as well.

There are other methods that use partitioning as well, such 
as tone injection [4] where the constellation is artificially 
extended or translates of codes [36]. Schemes such as active 
constellation extension [37] introduce redundancy as well but 
can be continuously formulated so that other methods such as 
convex optimization can be applied.

All discussed approaches assume to run a full cell selection 
search that is too complex in many situations. A better 
approach is discussed next.

DERANdOmIZATION OF CHOICES
The LDP provides a method to circumvent full search by assum-
ing a suitable underlying probability model for the cell selec-
tion. By derandomizing the cell selection one can easily devise 
suitable algorithms guaranteeing a PAPR reduction very close 

a

Partitioning
of Binary

Sequences

[Fig4]  A general model for peak power control: each cell 
contains the same information; sets with large PAPR (dotted 
areas) are mapped to sets where PAPR is below some threshold 
(grey-shaded areas).
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to the log(N) barrier [29], [38], [39]. The basis algorithm goes 
back to Spencer [40], who called it the probabilistic method.

The derandomization method is best explained along an exam-
ple: consider again the binary correlation model where any possi-
ble sign change for some information sequence C is allowed. 
Denote this sign vector by : [ , , ]A A AN0 1�= -  and the resulting 
transmit sequence by 5A C (respectively 5sA C). Suppose that all the 
sign changes happens at random with equal probability and each 
sign change is independent. As for the LDP, define the random 
variables , , :y A Ai i0 1� =� �

-� � 5 | , , .PAPR A As iA C 0 1�� �
-^ h" ,  Then 

we can mimic the steps (5)–(8) and successively reduce random-
ness by applying 

	 : , , , .arg minA y A A Ai
a

i i i0 1
i

�=� � �
-� �

By the properties of (conditional) expectations

	 , , , , ,y A A A y A Ai i i i i0 1 0 1� ��� � � � �
- -� �� �

and finally ( )s yPAPR 0�  since , ,y A AN N0 1�� �
-� �  is simply a 

nonrandom quantity. Finally, by the LDP logy N0 � � � for N 
large enough. Since the expectations are somewhat difficult to 
handle instead of the ( )sPAPR  typically the set function and cor-
responding bounds have been used. For example, Chernoff 
bounds have been used in [38], [29], and [41] showing good per-
formance and low complexity. Moment bounds with better tail 
properties have been used but the complexity is higher [42]. 
Performance results of the derandomization method are reported 
in Figure 5 comparing sequence balancing (see the section “Multi-
ple Signal Representation and Partitioning”) with and without 

derandomization. The benefit of the derandomization method is 
clearly observed and corresponds to more than 4 dB gain in HPA 
backoff (at 10 3-  outage probability), which mimics exactly the 
results of the LDP analysis (see the section “The LDP”). However, 
it comes at the cost of 1 bit/dimension rate loss. The relevant trad-
eoff between rate and PAPR have been rarely investigated so far.

Combining the derandomization method with partitioning 
yields several improved algorithms for standard problems. For 
example, the PTS method has been applied in [43]. It is proved 
that with derandomization method PTS can achieve logr N� � 
where r is the percentage of partial transmit sequences related to 
N. The tone reservation method has been treated using derandom-
ization in [29] (see also the section “Tone Reservation and Sze-
merédi’s Theorem”). Implicitly, derandomization has been used in 
[36] to show that PAPR of some translate of a code C is below 
| | ( ) .logC N  Related derandomization algorithms have been used 
in [39] adopting the so-called pusher-chooser game from [40]. 
The idea is to choose l p-norms and to prove a recursive formula 
similar to the Chernoff method. The approach can be generalized 
to alternative metrics if appropriate bounds are available: in [23] 
the SER has been reduced using derandomization showing that 

( ) /log N 2 clipping level is sufficient asymptotically for zero error 
probability [instead of ] .log N� �  Furthermore, in the recent paper 
[5], zero clipped energy is asymptotically achieved with clipping 
level log .log N� �

There is still plenty of room for improvements, e.g., by con-
sidering correlations between different samplings points and 
incorporating other metrics as well [5], [23]. It has not been 
noticed yet that this field is particularly underdeveloped and 
bears great potential for significant improvements of currents 
systems. Another point to be improved is the rate loss imposed 
by the current methods.

Additional resources: MIMO  
and multiuser systems
While the most beneficial in terms of spectral efficiency, MIMO 
systems complicate the PAPR problem: in single-antenna sys-
tems, the PAPR (or other metrics) of only one transmit antenna 
has to be controlled. In the MIMO setting, a large number of 
OFDM signals are transmitted in parallel, and typically the 
worst-case candidate dictates the PAPR metric (e.g., due to out-
of-band power) [19].

As a consequence, PAPR reduction methods tailored to this 
situation should be utilized instead of performing single-
antenna PAPR reduction in parallel. Multiantenna transmitter s 
provide additional degrees of freedom that can be utilized benefi-
cially for PAPR reduction—the full potential has not yet been 
explored in the literature. Basically, the peak power can be redis-
tributed over the antennas. By this, MIMO PAPR reduction may 
lead to an increased slope of the CCDF curves (cf. Figure 3), i.e., 
the probability of occurrence of large signal peaks can be signifi-
cantly lowered compared to single-antenna schemes. This effect 
is similar to that of achieving some diversity gain.

When studying MIMO PAPR reduction schemes, two basic 
scenarios have to be distinguished: on the one hand, 
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[Fig5]  This figure compares the sequence balancing method of 
the section “Multiple Signal Representation and Partitioning” in 
terms of the CCDF of PAPR for a 128 subcarrier OFDM system 
using 1) derandomization algorithm where all possible subcarrier 
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in point-to-point MIMO transmission, joint processing of the 
signals at both ends (transmitter and receiver) is possible. On 
the other hand, in point-to-multipoint situations, i.e., multiuser 
downlink transmission joint signal processing is only possible at 
the transmitter side. In the multipoint-to-point scenario (mul-
tiple-access channel) no joint optimization of the transmit sig-
nals can be performed, hence this case is not amenable for 
MIMO approaches. This fact heavily restricts the applicability of 
PAPR reduction schemes.

For the point-to-point setting, 
a number of PAPR reduction 
schemes have been designed, par-
ticularly the extension of SLM. 
Besides ordinary SLM (conven-
tional SLM is simply applied in 
parallel) simplified SLM (the 
selection is coupled over the 
antennas) has been proposed in 
[44]. Directed SLM [45] is tailored 
to the MIMO situation and successively invests complexity (test 
of candidates) only where PAR reduction is really needed.

It might be sufficient that the PAPR stays below a tolerable 
limit, determined by the actual radio front end. Here, complex-
ity can be saved if candidate generation and assessment is done 
successively and stopped if the tolerable value is reached. Inter-
estingly, the average number of assessed candidates is simply 
given by the inverse of the cumulative distribution function 
(CDF) of PAPR of the underlying original OFDM scheme. It is 
noteworthy to mention that, for ( )log NPAPR=  and reasonably 
large number N of carriers, average complexity per antenna is 
in the order of .2 718e �=  (Euler’s number) [46]. Alternative 
metrics have been used in [47].

Compared to point-to-point MIMO systems, developing 
PAPR reduction schemes applicable in point-to-multipoint 
scenarios (multiuser downlink) is a much more challenging 
task. Since no joint receiver-side signal processing is possible, 
for the candidate generation at the transmitter side, only 
those operations are allowed that can individually be reversed 
at each of the receivers. Among the SLM family, only simpli-
fied SLM can be used here. However, in this situation, the 
usually present transmitter side multiuser pre-equalization 
can be utilized for PAPR reduction. Applying Tomlinson–
Harashima precoding, the sorting in each carrier can be opti-
mized to lower PAPR at almost no cost in (uncoded) 
error rate [19]. The same is true when applying lattice-reduc-
tion-aided pre-equalization. Here the unimodular matrices 
(describing a change of basis) can be optimized to control the 
properties of the transmit signals [48]. There are also links 
from MIMO PAPR reduction and derandomization to code 
design (cf. the section “New Trends in Code Design”).

Going beyond: OFDM Capacity Fundamentals
While the capacity of the discrete-time peak-power-constraint 
channel is known and computable, the capacity of the OFDM 
peak-power-constraint channel is still an open problem [49], 

[50]. The problem is indeed intricate as it has been unknown 
until very recently that there are exponentially many OFDM sig-
nals with constant PAPR (cf. the section “New Trends in Code 
Design”). However, no practical encoding scheme is known that 
even comes close to this merely theoretical result. From this 
perspective the capacity problem awaits a more thorough theo-
retical solution.

Recent work [21], [22] on practical schemes indicates that 
clipped OFDM performs (almost) 
the same as unclipped OFDM with 
SNR reduced according to the 
clipping power loss. The main 
source of the loss is not the intro-
duced distortions or errors but 
simply the reduced output power. 
Given the OFDM frame in fre-
quency domain [ , , ]C C CN1 �=  
via IDFT the time-domain samples 

[ ]s k  are calculated. These samples 
then undergo clipping in the amplifier front end. As usual, the 
clipping behavior can be described by a nonlinear, memoryless 
point symmetric function ( )g x  (with ( ) ,g x x�  ,x 02  applied 
element-wise to vectors). In frequency domain, the clipped sig-
nal is given by { ( { })} .CgDFT IDFTZ =  Note that clipping is a 
deterministic function and a one-to-one relation between the 
vector C of unclipped symbols and the vector [ , , ]Z Z ZN1 �=  of 
clipped ones exist. Assuming an AWGN channel, at the receiver 
side, the vector Z, disturbed by additive white Gaussian noise, is 
present. In case of intersymbol-interference channels, the sym-
bols Zn are additionally individually scaled by the fading gain at 
the respective carrier.

This clipping behavior can be visualized for N = 3 and two 
PAM per carrier; see Figure 6(a). The initial hypercube with ver-
tices given by all possible vectors C is distorted. However, the 
attenuation of the useful signal (the vector Z has lower energy) 
will be the dominating effect over deformation. This, in turn, 
leads to the conclusion that a suited metric for capacity maxi-
mization is simply the average power of the power amplifier 
output signal.

A possible strategy is shown in Figure 6(b). A signal shaping 
algorithm may adjust the signal points in 2N-dimensional real-
valued space such that after clipping the set of all possible 
OFDM vectors in frequency domain forms (approximately) a 
hypercube with energy close to that of the initial constellation. 
The first work on using the strategy of active constellation 
extension for achieving is goal has been presented [51].

Emerging solutions: An open field

NEW TRENdS IN COdE DESIGN
Jones et al. [52] were the first to describe block coding schemes 
in the present context. This framework has been put in system-
atic form by observing the connection of cosets of Reed–Muller 
codes and complementary sequences [53], [54]. Unfortunately, 
these approaches have limited potential for modern OFDM 

Compressed sensing can  
be regarded as minimizing  

the number of measurements 
while still retaining the 
information necessary  
to recover the original  

signal well.



	 IEEE SIGNAL PROCESSING MAGAZINE  [138] no vember 2013 

systems due to their small coding rate. The fundamental trad-
eoff between different code key properties such as rate, PAPR, 
etc., was explored and discussed in [55]. More recent ideas use 
the idea of sequence balancing and code extensions in form of 
erasure coding in other domains (e.g., MIMO [56]) to tackle the 
PAPR problem with an inner code, while error correction still is 
done via an outer code [34].

Codes and sequences with low PAPR
Though most of multicarrier signals of length N have PAPR 
close to ( ),log N  it turns out that signals with constant PAPR are 
not so rare. Using a remarkable result of Spencer [57] it is possi-
ble to show that the number of such BPSK modulated signals, 
is exponential in N. Specifically, there are at least ( )2 K

Nd-  
such signals with PAPR not exceeding K, where Kd  is a constant 
depending on K and tending to zero when K grows. It is an 
open question how to generate many signals for given K.

Much research was devoted to describing signals with low 
values of PAPR. For BPSK modulated signals an extreme exam-
ple is provided by Rudin–Shapiro sequences defined recursively 
from ,P Q 10 0= =  and

	 ( , ), ( , ) .P P Q Q P Qm m m m m m1 1= = -+ +

These sequences of length being a power of two have PAPR at 
most two. More general examples of sequences with PAPR at 
most two arise from Golay complementary sequences. Two 
sequences constitute a complementary pair if the sum of the 
values of their aperiodic correlation functions sum up to zero. 
Many methods are known for constructing such sequences, 
see [2, Sec. 7.6]. Notice that it is not known if BPSK 

modulated signals can have PAPR less 
than two. However, if one increases 
the size of multiphase constellations 
to infinity, there exist sequences with 
PAPR approaching one [2, Th. 7.37]. 
For constructions of multiphase com-
plementary pairs from cosets of Reed–
Muller codes, see [58] and references 
therein. PAPR of m-sequences and 
Legendre sequences is discussed in [2, 
Sec. 7.7] and [2, Sec. 7.8].

Often we need to know the biggest 
PAPR among sequences belonging to a 
code. Bounds on PAPR of codes on 
sphere as a function of their sizes and 
minimum Euclidean distances was 
studied in [55]. A relation between the 
distance distribution of codes and PAPR 
was derived in [29]. This yielded 
bounds on PAPR of long algebraic 
codes, such as BCH codes. Analysis of 
PAPR of codes with iterative decoding 
(for instance, LDPC codes) remains an 
open problem. PAPR of codes of small 
size was studied in [55]. In particular, it 

was shown that PAPR of duals of length N BCH codes are at 
most .log N2 � �  Bounds on PAPR of Kerdock and Delsarte–
Goethals codes were derived as well. In [34], it was shown that 
in every coset of a code dual to BCH code with the minimum 
distance of log N� � exists a codeword with PAPR at most 

.log N� �  At the same time, this leads to a very modest rate loss. 
Still, constructing codes having low PAPR and high minimum 
distance seems to be a challenge.

Computing PAPR of a given code is a computationally con-
suming problem. If a code has a reasonably simple maximum-
likelihood decoding algorithm it is possible to determine 
efficiently its PAPR [59], [60].

In [56], off-the-shelf channel codes, in particular Reed–Solo-
mon (RS) and Simplex codes are employed to create candidates, 
from which, as in SLM, the best are selected. The codes are 
thereby arranged over a number of OFDM frames rather than 
over the carriers. Such an approach is very flexible as due to the 
selection step any criterion of optimality can be taken into 
account. Moreover, instead of applying the approach to the MIMO 
setting, it can also be used if block of temporal consecutive OFDM 
frames are treated jointly. The method is illustrated in Figure 7.

Constellation shaping
In constellation shaping, we have to find a constellation in the 
N-dimensional frequency domain, such that the resulting 
shaping region in the time domain has low PAPR. At the same 
time, we would like to have a simple encoding method for the 
chosen constellation. Such shaping based on Hadamard trans-
form was considered in [61]. The main challenge in constella-
tion shaping is to find a unique way of mapping (encoding) 
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and its inverse (decoding) of reasonable com-
plexity. The suggested approach in [61] and 
[62] is based on a matrix decomposition. 
Though the simulation results are quite 
promising, the implementation complexity 
still seems to be far from being affordable 
[62], [63].

BANACH SpACE GEOmETRY
An interesting new approach to the PAPR 
problem is that of using Banach space geome-
try. Banach space geometry relates norms and 
metrics of different Banach spaces to each 
other. For example, a question that often 
arises is: assume a Banach space with unit 
norm ball B1 and another Banach space with 
unit ball B2; both spaces are of finite, possibly 
different dimension. What is the relation 
between the norms if the projection of one 
ball covers the other ball? Furthermore, what is the dependence 
of this relation on the dimensions?

Interestingly, these relations turn out to be useful for the 
PAPR problem in several other ways depending on the underly-
ing Banach spaces as the following examples show.

Alternative orthonormal systems:  
Kashin and Tzafriri’s theorem
In the section “Approaching the log(N) Barrier: Derandom-
ization,” it was shown that OFDM has unfavorable PAPR of 
order ( )log N  if N gets large. One might ask if this is an arti-
fact of the underlying orthonormal signaling system. The 
answer is actually no, with the implication that OFDM plays 
no specific role among all orthonormal systems. In [64], it 
was already shown that the worst PAPR is of order N regard-
less of the signaling system, e.g., multicarrier code division 
multiplexing (CDM), etc. But even if we consider not the 
worst PAPR but look at the PAPR on average, the situation 
does not get better. In [65], Kashin and Tzafriri proved that 
for any orthonormal system on a given finite time interval 
the expectation of PAPR is necessarily of order ( ) .log N  Again, 
changing the signaling is not beneficial in terms of PAPR. 
The underlying mathematical problem is that of estimating 
the supremum norm of a finite linear combination of func-
tions weighted with random coefficients constrained in the 
energy norm.

Is PAPR of single-carrier really much better?
It is common engineering experience that single-carrier has 
better PAPR than multicarrier. But it might be worth raising 
this question again within the context of upcoming technologi-
cal advances (such as LTE-A), which operate much closer to the 
Nyquist bandwidth and, moreover, use different modulation and 
coding schemes. Let us formalize this question.

Suppose, we send a transmit sequence , ...,C CN1  and use a 
band-limited filter to generate the continuous-time signal 

(bandwidth is set to r for simplicity). The transmit signal can be 
described by

	 ( )
sin

s t C
t t

t t
i

i

i

i

N

1 r

r
=

-

-

= �
�

�
�/

with sampling points .t Zi �  Naturally, band-limited signals of this 
form have very different PAPR behavior compared to OFDM since, 
obviously, if the coefficients are from some standard modulation 
alphabet, the signal is nailed down to some finite value at the sam-
pling point independent of N. However, within the sampling inter-
vals (on average) large PAPR could actually occur. Noteworthy, the 
worst case is growing without bounds linearly in N.

Surprisingly, the exact answer to this problem has not been 
explored until very recently [66], which is basically a result on 
large deviations in Banach spaces. It is proved in [66] that such 
bad PAPR cannot actually happen and that there is a constant 
c 0>0  such that 

( ) .log logc NPAPRE 0�� �

But we also see the catch here. Modern communication systems 
use higher modulation sizes and, in that case, the influence of 
the data becomes dominant if the distribution becomes Gauss-
ian-like. In that case we approach the log(N) again.

There is an interesting connection of the PAPR problem to 
the Hilbert transform context: since in many standard commu-
nication models, e.g., in Gabor’s famous “Theory of Communi-
cation” [67], [68], the transmit signal is a linear combination of 
a signal and its Hilbert transform, properties such as PAPR in 
the transform domain become more and more important. Initi-
ated by early works of Logan [69], who investigated the Hilbert 
transforms of certain bandpass signals, it was recognized not 
until very recently [70], [71] that the results are fragile for wide-
band signals containing spectral components in an interval 
around zero frequency. Then, in general, the domain of the Hil-
bert transform must be suitably extended; further, examples of 
band-limited wideband signals are provided where the PAPR 
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grows without bounds in the Hilbert transform domain [72]. 
Hence, for certain single-carrier analytic modulation schemes 
the transmit signal has to be shaped very carefully.

Overcomplete expansions with  
uniformly bounded PAPR
While the result for arbitrary orthonormal systems appears rather 
pessimistic, there is a possible solution in the form of frames. 
Frames are overcomplete systems of vectors in , .n NRn 1  Let us 
denote this description by [ , ..., ] , .U u u N nRN

n N
1 ! $= �  Then, 

if the rows are independent there is x RN�  so that

	 Uy xT= 	 (10)

for any y Rn�  and the elements of U are a frame. If ,U U IT
n=  

where In is the identity matrix, then it is called a tight frame. In 
his seminal work, Kashin [8] interpreted the mapping (10) as an 
embedding of the Banach space with supremum norm l� to the 
Banach space with standard Euclidean norm l 2 and asked for 
the growth factor , : / ,K N n02 mm =� �  between the two norms 
when the l 2 unit ball in Rn should be covered by the unit ball l� 
in .RN  Such representations are called Kashin representations 
of level m [73].

Clearly, if N n=  then K Nm =� � . However, if N n2  (over-
complete expansion) then Kashin proved that there is a sub-
space in RN generated by a frame U such that ( )K m  is given by 

,: .logK c c1 1 1 0
/

1
1 2

1 2m
m
m

m
m=

-
+

-
� ��� ��

Hence, the K m� � is uniformly bounded in n if 1>m  is fixed. 
Good estimates of the constant c 01 2  are not known [73].

This intriguing result has been applied in the PAPR context in 
[73] and the implications for peak power reduction are immedi-
ate. The matrix U can be taken as a precoding matrix for classical 
OFDM transmission and achieve uniformly bounded PAPR. 
Unfortunately, the construction of the optimal subspace is not 
known [73]. Kashin representations exploiting the uncertainity 
principle of random partial Fourier matrices are presented in [74].

Tone reservation and Szemerédi’s theorem
One of the oldest but still very popular schemes is tone reser-
vation [75]. But, despite its simplicity, many questions remain 
unanswered, which does not come by coincidence: recent 
work in [76] has analyzed the performance of this method and 
uses an application of Szemerédi’s famous theorem about 
arithmetic progressions.

Recalling the setting where a subset of subcarriers is solely 
reserved for peak power reduction, the challenge is to find for a 
given set of transmit sequence a subset and corresponding val-
ues such that the PAPR is reduced to the most possible gain. 
Until now, achievability and limits are not known (except for 
simple cases). Therefore, there is some incentive to look at this 
problem from a new perspective. Reference [76] has analyzed 
the case where the compensation set is arbitrary but fixed. In 
this typical case, it is proved that the efficiency of the system, 

i.e., the ratio of cardinality of information and compensation 
sets, must decrease to zero with growing N if the peak power is 
constrained independent of the subcarriers. The proof shows 
that to maintain some strictly nonzero efficiency, a necessary 
condition is a relation between Banach spaces on multicarrier 
signals represented by the information set. This relation is 
shown not to hold asymptotically for sets with additive struc-
ture. However, Szemerédi’s theorem states that such sets are 
included in every subset of cardinality Nd  where .02d  In fact, 
such arithmetic progressions induce signals with bad PAPR 
behavior naturally to be excluded by the tone reservation 
method. The theorem shows that this is not possible.

In extended work [77], other families of orthogonal signaling 
such as Walsh sequences are also analyzed, where all of them 
showed basically the same discouraging result regarding the 
system’s efficiency. This leads to the conjecture in [77] that all 
natural orthogonal signalling families have this behavior.

COmpRESSEd SENSING
Compressed sensing [6], [7] is a new sampling method that 
compresses a signal simultaneously with data acquisition. 
Each element of the compressed signal or measurements con-
sists of a linear combination of the elements in the original 
signal and this linear transformation is independent of instan-
taneous characteristics of each signal. In general, it is not pos-
sible to recover an unknown original signal from the 
measurements in the reduced dimension. Nevertheless, if the 
original signal has sparsity property, its recovery can be per-
fectly achieved at the receiver. Since sparsity frequently 
appears in the PAPR problem, compressed sensing can be a 
powerful tool to solve these problems.

Compressed sensing can be regarded as minimizing the 
number of measurements while still retaining the information 
necessary to recover the original signal well (i.e., beyond classi-
cal Nyquist sampling). The process can be briefly illustrated as 
follows. Let f denote a signal vector of dimension N and g be a 
measurement vector of dimension M with M N1  obtained by 

,g f�=  where �  is called sensing matrix. At the transmitter, 
sampling and compression are performed altogether by simply 
multiplying �  by f to obtain g. At the receiver, if f is an S-sparse 
signal, which means f has no more than S nonzero elements, it 
is shown in [7] that the exact f can be obtained from g by using 
l 1 minimization, that is,

	 | | | |min f g fsubject to
f

1 U=� �
�

	 (11)

as long as �  has some good property, which is called restricted 
isometry property (RIP). For some positive integer S, the isom-
etry constant Sd  of a matrix �  is defined as the smallest number 
such that

( ) | | | | | | | | ( ) | | | |f f f1 1S S2
2

2
2

2
2� �d dU- +

holds for all S-sparse vectors f. Under RIP with ,2 1S2 1d -  
(11) gives the exact solution for f [78]. This recovery method 
using l 1-minimization is called basis pursuit (BP) [79], which 
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sensing. The fast Fourier transform (FFT) block of OFDM sys-
tems can be decomposed into the small FFT blocks. And, the 
subset of rows in the small sized DFT matrix can also be used as 
a sensing matrix, which can be used to recover the clipping 
noise for OFDMA systems via sparse recovery algorithm.

Figure 8 shows the bit error rate (BER) over SNR perfor-
mance of the clipping noise cancellation schemes based on 
compressed sensing described in [92] and [95] for OFDM sig-
nals over the AWGN channel. The S-sparse clipping noise sig-
nal contaminates the original OFDM signal and the case of no 
clipping noise cancellation shows the worst BER performance 
among all schemes. In [92], the authors applied the com-
pressed sensing technique to OFDM systems for the first time, 
but there is a benefit only for the high SNR region due to 
weakness of compressed sensing recovery against AWGN. The 
BER performance of the scheme in [95] is better because the 
number of the measurements can be adjusted corresponding 
to the AWGN level.

Conclusions
Despite two decades of intensive research, the PAPR problem 
remains one of the major problems in multicarrier theory with 
huge practical impact. This article provides a fresh look on this 
problem by outlining a new perspective using alternative met-
rics (including MIMO and multiuser systems as a special case), 
the corresponding theoretical foundations and related designs. 
This is followed by thorough discussion of current limits and 
new future directions.
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